
 MAPPER - 261507 - FP7/2007-2013

Project acronym: MAPPER

Project full title: Multiscale Applications on European e-Infrastructures.

Grant agreement no.: 261507

D 8.4 Final validation and integration with external modules

Due-Date: 30 september

Delivery:

Lead Partner: Cyfronet

Dissemination Level: Public

Status: After corrections from QAB

Approved:

Version: 1.4

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 2 of 57

DOCUMENT INFO

Data and version number Author Comments

17.06.2013 0.1 Katarzyna Rycerz Plan of the document

27.06.2013 0.2 Joris Borgdorff Section about MML

2.07.2013 0.3 Katarzyna Rycerz Section with general

overview of the tools

2.07.2013 0.4 Robert Pajak Download statistics section

3.07.2013 0.5 Katarzyna Rycerz Evaluation of tools

efficiency

22.07.2013 0.6 Tomasz Gubała Sections about MaMe

03.09.2013 0.7 Daniel Harężlak Sections about MAD,

integration methodology

and QCG integration

04.09.2013 0.8 Maciej Pawlik Sections about AHE

integration, provenance

05.09.2013 0.9 Eryk Ciepiela Sections about GridSpace

Experiment Workbench and

Execution Environment

10.09.2013 1.0 Katarzyna Rycerz Minor corrections,

formatting

12.09.2013 1.1 Katarzyna Rycerz Minor annex corrections

and formatting

14.09.2013 1.2 Piotr Nowakowski Editing and proofreading

14.09.2013 1.3 Katarzyna Rycerz Minor corrections

20.09.2013 1.4 Katarzyna Rycerz Corrections according to

QAB

22.09.2013 1.5 Katarzyna Rycerz Minor corrections

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 3 of 57

TABLE OF CONTENTS

1 Executive summary ... 6

2 Contributors ... 7

3 Glossary of terms... 7

4 General overview of multiscale programming and execution tools10

5 Final Report on the tools ...12

5.1 User Interfaces and visual tools ... 12

5.1.1 Multiscale Modeling Language ..12

5.1.2 Multiscale Application Designer ...12

5.1.3 GridSpace Experiment Workbench ...14

5.2 Programming tools ... 16

5.2.1 MAPPER MEmory and MML repository...16

5.3 Execution Tools ... 16

5.3.1 GridSpace Execution Engine ...16

5.3.2 Result Management ..17

5.4 Provenance .. 18

6 Prototype availability ...19

6.1 MML and jMML library .. 19

6.2 MAD ... 19

6.3 MAPPER Memory and MML repository .. 19

6.4 GridSpace Experiment Tools ... 20

6.5 Provenance and Results Management .. 20

7 Integration and validation methodology ...21

8 Tools integration with external modules...22

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 4 of 57

8.1 Integration with MAPPER services ... 22

8.2 Integration with scientific software .. 22

9 Evaluation of tool efficiency ..24

10 Summary and Conclusions ...34

11 References ...35

12 Annex: Detailed description of tools ..37

12.1 JMML library .. 37

12.2 MAD ... 38

12.3 GridSpace .. 43

12.3.1 Features added to GridSpace Experiment Workbench during the MAPPER

project 43

12.3.2 Futures added to GridSpace Execution engine during the MAPPER project ...45

12.4 MAPPER Memory .. 51

12.5 Registry of Module Metadata ... 51

12.6 Repository of xMML Descriptions ... 54

12.7 Provenance System ... 56

LIST OF FIGURES

Fig. 1 Architecture of the programming and execution tools. ... 11

Fig. 2 A snapshot of MAD’s main view, showing a sample multiscale application composed from single

scale submodules. The application is modeled using MML. .. 13

Fig. 3 Relations between MML description, GridSpace experiment and execution environment. The high-

level MML description is translated into an experiment that can later be executed on specific

infrastructures using MAPPER Services (AHE, QCG) [Rycerz_b] ... 15

Fig. 4 Architecture of the provenance system, including relations between an experiment executed on an

experiment host, the GridSpace execution engine, the provenance database and the provenance

interface (QUATRO). .. 18

Fig. 5 Number of page views for the http://gs2.mapper-project.eu web site (i.e. MAD, MaMe and

GridSpace EW in total) ... 29

Fig. 6 Number of page views for MAD, MaMe and GridSpace EW tools. ... 29

Fig. 7 Number of visits for the http://gs2.mapper-project.eu web site (i.e. MAD, MaMe and GridSpace EW

in total) .. 30

Fig. 8 Location of visitors (cities) for the http://gs2.mapper-project.eu website. .. 30

Fig. 9 Number of visits for MAD, MaMe and GridSpace EW separately .. 31

Fig. 10 Location of visitors (cities) for the tool manuals available at

http://dice.cyfronet.pl/projects/details/Mapper website. .. 32

Fig. 11 CxA configuration template filled in by MAD according to the gMML contents............................. 39

Fig. 12 Property editor allowing for submodule parameter modification.. 40

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 5 of 57

Fig. 13 Application list of the xMML repository .. 41

Fig. 14 Mapping among reservations and application submodules .. 42

Fig. 15 The connections between individual elements in the GridSpace and AHE. 48

Fig. 16 A single-scale model presented by the MaMe Model Registry. Only the most general metadata is

displayed when browsing the list of available models, mappers and filters. Any additional

information and dialog boxes (ports, implementations) are loaded on demand with asynchronous

AJAX calls. ... 51

Fig. 17 Any element of a MAPPER application, be it a scale model, a mapper or a filter, may have its

implementations registered in MaMe. In this way other MAPPER components (MAD, GS etc.) are

able to learn how to execute a given computation. Moreover, scale models and mappers may have

ports, which play a crucial part in xMML notation and which provide the means for putting together

complex applications into a single workflow processing. ... 52

Fig. 18 A simple MaMe web form for altering application element description by adding a new port; the

administrator or the developer is able to add and remove any part of module metadata. In addition,

any element can be modified in-situ. .. 52

Fig. 19 As the codebase of MAPPER applications grows, the administrator may use MaMe forms such as

this one to add new implementations of registered application modules. ... 53

Fig. 20 All REST operations, that MaMe exposes as its API for other MAPPER tools in use for

interactions, are described online. Users can click the API Help button in the MaMe main menu to

view documentation on each API operation, similar to the one in the picture. 54

Fig. 21 Main view of the Experiment (xMML) Repository part of MaMe, showing the list of recorded

experiment (application) descriptions, each represented by an xMML document in the specific

version of this notation, along with a list of application elements and their interconnections. 55

Fig. 22 The ontology used by the MAPPER provenance system ... 56

LIST OF TABLES

Tab. 1 Actions involved in developing and execution of multiscale applications that can be facilitated by

WP8 tools. ... 24

Tab. 2 Using WP8 tools in MAPPER applications ... 26

Tab. 3 Number of page views for the http://gs2.mapper-project.eu web site .. 28

Tab. 4 Number of page views for MAD, MaMe and GridSpace EW tools separately. 29

Tab. 5 Number of visits for the http://gs2.mapper-project.eu web site .. 29

Tab. 6 Number of visits for the MAD, MaMe and GridSpace EW tools separately. 30

Tab. 7 Number of page views for tool manuals .. 31

Tab. 8 Number of visits for tools manuals .. 31

Tab. 9 Download statistics for the tool packages. ... 33

Tab. 10 MaMe API interface for other MAPPER tools to connect with the registry and to publish or

retrieve stored information. .. 53

Tab. 11 HTTP/Rest interface of the xMML repository ... 55

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 6 of 57

1 Executive summary

This deliverable describes the final prototype of multiscale programming and execution tools

in the MAPPER project. Specifically, D8.4 describes the tools facilitating creation and

execution of multiscale applications whose structure is specified with the Multiscale

Modelling Language (MML). The presented tools support composition of multiscale

applications from existing single-scale submodules installed on e-infrastructures. Following

composition, such applications are executed. The tools are designed so that , by applying a

uniform multiscale specification, the applications and submodules are reusable, i.e. the tools

support building different multiscale applications from the same modules and switching

between different versions of the modules with the same scale and functionality. Applications

consist of computationally intensive simulation modules requiring HPC or Grid resources,

often implemented as parallel programs, with tight (cyclic), loose (acyclic) or hybrid coupling

schemes.

The final prototype contains improved programming and execution tools: the application

composition tool called Multiscale Application Designer (MAD), a registry for application

modules descriptions (MAPPER Memory – MaMe), a repository of MML applications

descriptions, as well as tools supporting high-level execution – the GridSpace (GS)

Experiment Workbench (EW) and the GS Execution Engine, for executing the applications

on selected resources. This documents also describes the Provenance and Result

Management system. Additionally, we discuss integration of the described tools with external

modules: QCG-Broker and the Application Hosting Environment (AHE), MAPPER services

that interface underlying e-infrastructures. The description covers the detailed architecture of

each tool along with its specific features. Links to the prototypes, code repositories and

demonstrations are provided.

The document is organized as follows: Section 2 lists contributors to this deliverable while

Section 3 contains a glossary of frequently used terms. In Section 4 we briefly describe the

architecture of the prototype and its relation to design presented in D8.1, and implementation

status presented in D8.2 and D8.3. Detailed information about each tool can be found in

Section 5. In Section 6 we include links to prototypes, code repositories and/or

demonstration videos. Section 7 describes the integration methodology applied in the

MAPPER project. Section 8 briefly summarizes external modules integrated with presented

tools. Section 9 outlines evaluation of the performance of WP8 tools. We conclude our

description in Section 10. Details regarding the functionality of selected tools can be found in

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 7 of 57

the Annex (Section 12). The status of MAPPER applications and their use of the presented

tools can be found in D7.3.

2 Contributors

Below we list the institutions and names of contributors. Their exact role in this deliverable is

described in the info table at the beginning of the document.

Cyfronet: K. Rycerz, D. Harężlak, M. Pawlik, E. Ciepiela, T. Gubała, R. Pająk, M. Bubak, P.

Nowakowski

PSNC: M. Mamoński ,T. Piontek

UvA: Joris Borgdorff

UU: Alexandru Mizeranschi

UCL: Stefan Zasada

UNIGE: M. Ben Belgacem

3 Glossary of terms

This document makes use of the following terminology:

Application Hosting Environment (AHE): a framework supporting running applications on

Grid infrastructures hosting Globus, UNICORE or GridSAM middleware.

Asset : an entity indicating an input or output file of the application.

Car-Parrinello Molecular Dynamics (CPMD): package containing a parallelized plane

wave/pseudopotential implementation of Density Functional Theory, particularly designed for

ab-initio molecular dynamics.

CxA: Ruby-based file format that describes a MUSCLE application: (1) module parameters

(2) couplings between modules.

Executor: a common entity for hosts, clusters, grid brokers etc. – any module capable of

running software which is already installed on it (represented as interpreters).

Experiment host: host where a GridSpace experiment is executed

Filter: in MML terminology, a one-to-one type of relationship between submodels

gMML: see MML

GUI: Graphical User Interface

jMML : Java library supporting MML

GridSpace experiment: a set of snippets in various script languages stored in an XML file.

Interpreter: a software package accessible from any scripting language available on any

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 8 of 57

infrastructure available to the MAPPER community. Examples of interpreters include

MUSCLE1 and LAMMPS2 tools. We assume that this software is installed in WP4.

JobProfile: see QCG JobProfile

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS): package

supporting classical molecular dynamics simulations.

Loosely coupled and tightly coupled: a collection of submodel instances is loosely coupled

if there is no cycle between them in the coupling topology, and tightly coupled otherwise.

Mapper: in MML terminology, a mapper is a one-to-many relationship between single-scale

submodels. Note the difference between mappers and the MAPPER project.

MAPPER memory (MaMe): semantics-aware persistence store for MAPPER metadata

based on xMML descriptions

Multiscale Application Designer (MAD): MAPPER application composition tool

Metadata: data describing other data (e.g. a link to an actual file, but not file itself)

Multiscale model: the model of a multiscale process.

Multiscale Modelling Language (MML): a high-level concept of the language that describes

single-scale submodels and their connections. The connection can be realized by mappers

(one-to-many connection) or filters (one-to-one connection with data filtering). It has several

representations; the ones described in this document being xMML and gMML:

 xMML: XML representation of MML that contains all information about application

structure. The latest version of the xMML specification can be found at

http://napoli.science.uva.nl/xmml/xmml.tar.gz.

 gMML: graphical representation of MML that contains only some of the information

about application structure, useful for modellers and application developers.

Multiscale Coupling Library and Environment (MUSCLE): a communication library that

can be used to connect modules implementing single-scale models into a multiscale

simulation. The structure of the application is described in a CxA file.

Submodel (Single-scale model): a model of a single-scale process. In the context of a

multiscale model, a submodel.

Snippet: a piece of code in a scripting language.

Synchronization points: points during execution where one submodel instance will need to

synchronize with another (including itself) by requesting input.

1
 http://apps.man.poznan.pl/trac/muscle

2
 http://lammps.sandia.gov/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 9 of 57

System Biology Markup Language (SBML): an XML-based language for representing

models. It's oriented towards describing systems which involve biological entities and are

modified by processes that occur over time.

QosCosGrid (QCG): a resource and task management system aiming to provide

supercomputer-like performance and structure to cross-cluster large-scale computations that

need Quality of Service (QoS) guarantees.

QCG JobProfile: an XML-based language describing how to execute an application using

QCG middleware.

Repository: a place where multiscale application description files (e.g. xMML files) are

stored and managed.

Registry: a place where information (metadata) about certain entities (in our case,

simulation modules) is registered (note that the modules themselves are not stored there).

Task graph: an acyclic directed graph representing submodel instances and their

synchronization points as they unfold over time. It may include each of the operators of the

SEL as nodes.

User Interface machine (UI): a machine accessible directly (via SSH) by users from which

they can access other (Grid, PBS) resources

xMML: see MML

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 10 of 57

4 General overview of multiscale programming and execution

tools

The general architecture of the multiscale programming and execution tools is shown in Fig.

1, which is an enhanced version of the architecture presented in D8.3, in accordance with

evolving user requirements.

The first group – user interfaces and visual tools – developed in task 8.1, comprises the

Multiscale Application Designer (MAD) – a visual tool for composing single-scale models and

their mappers into full multiscale applications; the GridSpace Experiment Workbench (EW),

which is a front-end for the GridSpace Execution Engine, as well as interfaces to other

programming and execution tools.

The second group, i.e. programming tools (developed in task 8.2), contains MAPPER

memory (MaMe) – a registry for applications building blocks, i.e. single scale models and

their mappers – and an xMML repository of structural descriptions of composed applications

in a special XML-based language called xMML (see subsection 5.1.1).

The third group – execution tools – developed in task 8.3, includes the GridSpace Execution

Engine used for execution of applications built in MAD. GridSpace calls arbitrary software

required by applications and registered in the GridSpace registry of interpreters. An important

interpreter is the Multiscale Coupling Library and Environment (MUSCLE) used by tightly

coupled multiscale applications. To access various e-infrastructures, GridSpace is integrated

with external modules i.e. QCG-Broker and the AHE interoperability layer on the API level.

QCG-Broker and AHE are MAPPER services that provide access to e-infrastructures with

additional functionality required by multiscale applications like co-allocation and resource

reservation (QCG) or unified access to various grids like globus or UNICORE (AHE). Direct

access via SSH is also supported.

Result Management takes advantage from the Provenance system (Task 8.4) capable of

saving snapshots of experiment results together with their metadata. The user is able to view

experiment results and metadata using the Provenance Interface.

The following chapters contain detailed descriptions of the presented tools, together with

their architecture and features, lists of changes from the second prototype (described in

D8.3) and links to prototypes, code repositories and/or demos.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 11 of 57

Fig. 1 Architecture of the programming and execution tools.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 12 of 57

5 Final Report on the tools

5.1 User Interfaces and visual tools

5.1.1 Multiscale Modeling Language

The goal of MML [Borgdorff_a] is to bridge the gap between multiscale modelers and tool

developers, and execution software. MML expresses a high-level specification of a multiscale

model in terms of well defined elements such as single-scale models (called submodels),

connections (conduits) and mappers transforming data between submodels. Due to the

constraints that MML imposes, this specification is sufficient for runtime environments to

execute a model and run a simulation. On the other hand, MML does not dictate which

runtime environment to use, and an MML specification only describes submodels in a

general way rather than forcing a particular implementation of submodels.

To make MML suitable both for users and software, MML has a graphical format called

gMML and an XML format called xMML. Users can compose their model with gMML and

discuss its structure. This gMML description is converted into the more specific and machine-

readable xMML, which is suitable as an exchange format.

MML assumes a rigorous approach toward multiscale modeling. First, the scales of the

phenomena to be modeled must be assessed, using, for instance, a scale separation map

(SSM) [Hoekstra]. Next, a decomposition into single scale models called submodules,

including their interactions and scale bridging methods should be defined. Submodels have a

well-defined flow called the submodel execution loop (SEL) which restricts the points where

submodels may interact. With this restriction, there is a limited set of possible coupling

templates, based on the temporal scale relation between pairs of submodels.

In MML it is possible to change one submodel without affecting others, as long as the

coupling remains valid. Each submodel has ports that send or receive at certain points in the

submodel execution loop. Ports of different submodels are then coupled with a unidirectional

conduit. If the data from one submodel is not in a suitable form to be processed by another

submodel, so-called conduit filters or mappers may transform the data.

The jMML library, a Java library that handles MML is described in the Annex (Section 12.1).

5.1.2 Multiscale Application Designer

The Multiscale Application Designer (MAD) is a graphical tool enabling easy multiscale

application composition out of individual components described using MML. The tool is

available to users through a web browser and facilitates convenient drag-and-drop

techniques to build applications. An example application designed in MAD is shown in Fig. 2.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 13 of 57

In the left column a list of graphical representations of submodels and mappers (see MML

terminology) is available. The items can be dragged onto the workspace in the central part of

the view. There, application composition can be performed by connecting ports to produce

the final arrangement. The menu on the right contains a list of actions which can be called by

the user. These include saving the graph in an internal XML format, exporting it to a GS

experiment which can be executed inside the GridSpace EW (see subsection 5.1.3),

exporting the graph to an extended xMML format or loading a graph from the extended

xMML file.

For the sake of convenience an option is provided to open an experiment directly in

GridSpace EW. Finally, separate repository and reservation views are available from the

menu. In the bottom part of the main view a property editor is displayed, which enables users

to edit module parameters.

Fig. 2 A snapshot of MAD’s main view, showing a sample multiscale application composed from single

scale submodules. The application is modeled using MML.

Submodel and mapper items are generated according to the contents of the MaMe registry

which is one of the external dependencies of MAD. As there are many modules registered in

the repository (over a hundred), a filter box was added which limits the displayed items as

the user types in the query. Key features of MAD and its integration with other MAPPER

components are described in detail in the Annex (Section 12.2).

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 14 of 57

5.1.3 GridSpace Experiment Workbench

In order to handle execution of applications, we have chosen the in silico experimentation

approach embodied by a virtual laboratory platform called GridSpace [Ciepiela]. During the

course of the MAPPER project GridSpace was modified and extended according to

multiscale applications requirements. The applications executed by GridSpace, called

GridSpace experiments, consist of a number of arbitrary executable pieces of code (called

snippets) and their input and output files (assets). Each snippet can support its own type of

application execution (e.g. a tightly-coupled connection scheme specified in MUSCLE CxA

[Borgdorff_c], a Python or Ruby script performing some user-defined calculations, or a script

using a specific scientific package such as LAMMPS3). As a result the GridSpace experiment

concept fits into the requirements of general multiscale application description. An example

relation between a high-level MML description and a GridSpace experiment is shown

in Fig. 3.

The GridSpace architecture is composed of a web-based UI (the GridSpace Experiment

Workbench – EW), and the GridSpace Execution engine backend. GridSpace EW serves

experiments and their input and output files through web layer. Experiment parts (i.e. code

snippets) are executed by the GridSpace Execution Engine using appropriate software (i.e.

interpreters) such as scripting language interpreters or specific software (e.g. LAMMPS,

CPMD4 or MUSCLE). Executors are used to dispatch computational tasks to e-

Infrastructures using direct shell access or MAPPER services in the interoperability layer (i.e.

QCG-Broker or the Application Hosting Environment). Since the previous release of

MAPPER prototypes, thoroughly described in D8.2 and D8.3, considerable effort has been

directed towards further development of the GridSpace platform in order to accommodate

requirements of multiscale applications both from the MAPPER portfolio and external

sources. In particular, the GridSpace Experiment Workbench (EW) has been refactored and

enriched as described in Annex (Section12.3.1).

3
 http://lammps.sandia.gov/

4
 http://www.cpmd.org/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 15 of 57

Fig. 3 Relations between MML description, GridSpace experiment and execution environment. The high-

level MML description is translated into an experiment that can later be executed on specific

infrastructures using MAPPER Services (AHE, QCG) [Rycerz_b]

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 16 of 57

5.2 Programming tools

5.2.1 MAPPER MEmory and MML repository

The main task of MAPPER Memory (MaMe) is to provide a rich, semantics-aware

persistence store for other components to record and share information. The MaMe registry

delivers its functionality based on a well-defined domain model which includes all important

elements of MAPPER metadata: scale modules, mappers and filters, together with their

ports, implementations and other constitutive elements and attributes. Thanks to MaMe

other MAPPER tools are able store, publish and share a common registry of such elements

throughout the entire installation. MaMe is based on the idea of Semantic Integration

[Gubala], designed and developed at ACC Cyfronet AGH.

MaMe consists of two main building blocks, each performing a distinct role. These are

MAPPER Modules Registry and MAPPER xMML Repository. The primary purpose of the

module metadata registry is to persistently store and publish descriptions of scale models,

mappers and filters developed for MAPPER applications. The main objective of the MAPPER

xMML Repository is to provide MAPPER MAD users with shareable storage for constructed

multiscale application descriptions in the form of an xMML schema. A detailed description of

both tools can be found in Annex (Section 12.4).

5.3 Execution Tools

5.3.1 GridSpace Execution Engine

The GridSpace Execution Engine constitutes a backend facility for submission of

experiments developed and run through the GridSpace Experiment Workbench (EW)

previously described in Section 5.1.3. Detailed features of the GridSpace Execution Engine

are described in the Annex (Section 12.3.2).

To achieve effective integration with MAPPER external services GridSpace introduces a

level of abstraction above access to computational facilities, i.e. SSH-accessible clusters,

QCG brokers, AHE-accessible resources and other infrastructures not known in advance, but

potentially required within or beyond the scope of MAPPER. According to that abstraction,

GridSpace experiment snippets are associated with interpreters, regardless of where (and

whether) they are installed. The interpreters are then deployed on a set of computational

resources, binding them to executors (see Fig. 3). In the MAPPER project we have

developed three executors: the SSH executor (for integration with basic SSH-accssible

resources), the QCG executor (for integration with QCG Broker) and the AHE executor (for

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 17 of 57

integration with AHE). Details on these executors can be found in the Annex (section 12.3.2).

Details on GridSpace-AHE and GridSpace-QCG integration can also be found in deliverables

related to service activities (i.e. D4.2 and D5.2).

5.3.2 Result Management

In MAPPER, result management involves three aspects:

 storing, reading and browsing the file created as the result of experiment execution,

 storing metadata that describes experiment output,

 browsing results and searching with the associated metadata.

Physical file handling is provided by a file browser in GridSpace, enabling access to files that

are present at a location related to the specific experiment executor using SSH and GridFTP.

A provenance tool aids the user in this process. It stores copies of experiment input and

output files, and versioning them. This way experiment results are persisted even if they are

changed or deleted on the original machine. Copying is disabled for files that are too large to

be transferred over the network. Two protocols are used for transferring files:

 SSH – in this case the GridSpace server works as an intermediary between the

executor storage and versioning storage. This is required since establishing a direct

SSH connection between machines via a third party is usually not possible

 GridFTP – if the machine that runs the experiment supports this protocol, GridSpace

uses the third-party-copy feature and files are copied directly between the source and

target machines.

Besides file metadata, the provenance system collects detailed information on each

GridSpace experiment execution, including what results (files) were created, when and by

which execution steps (snippets). It also provides links to result copies, facilitating easy

access and browsing. More details are available in subsection 5.4.

Basic browsing features are provided by file browser of GridSpace. GridSpace enables users

to browse the directory tree present on the infrastructure that runs the experiment.

Additionally, GridSpace allows to monitor standard output of the running experiments on-line.

The more sophisticated browser is QUATRO, provided for provenance. It is a web-based

application that allows users to construct queries for the RDF database containing

provenance data. The results of such queries may include copies of files produced by an

experiment. As a result, the provenance browser can be used as an experiment result

browser.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 18 of 57

5.4 Provenance

As described in subsection 5.3.2, the MAPPER provenance system provides the

functionality of tracking, storing, browsing and querying metadata about execution of

multiscale application.

Fig. 4 Architecture of the provenance system, including relations between an experiment executed on an

experiment host, the GridSpace execution engine, the provenance database and the provenance interface

(QUATRO).

The architecture of the provenance system is shown in Fig. 4. The Experiment Host is a host

that runs the experiment using input and output files (input and output assets). The

GridSpace Machine hosts the GridSpace Execution Engine described earlier on in this

deliverable, together with a GridFTP server to enact file transfers from the experiment host,

required to store and register experiment results. The GridSpace Execution Engine supplies

event information to the provenance database. Provenance data can be browsed by

QUaTRO (provenance interface). DataStore keeps provenance-related data and snapshots

of experiment input and output files. Details of the provenance data format are described in

the Annex (Section 12.7).

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 19 of 57

6 Prototype availability

In general, the user and administrator manuals and movies demonstrating WP8 tools can be

found at http://dice.cyfronet.pl/projects/details/Mapper.

Tutorials are available at:

 http://www.mapper-project.eu/web/guest/84

 http://www.mapper-project.eu/web/guest/mad-mame-ew

Below we present a detailed list of links for each tool.

6.1 MML and jMML library

The MML language is described in [Borgdorff_a].

The xMML specification is available on http://github.com/blootsvoets/xmml as an

open source project.

The jMML library is available on http://github.com/blootsvoets/jmml as an open

source project.

6.2 MAD

MAD is available as a production service under the following URL:

https://gs2.mapper-project.eu/mad

User and administration manuals are available under the following URLs:

● http://dice.cyfronet.pl/projects/details/Mapper-

files/MAD_User_Manual

● http://dice.cyfronet.pl/projects/details/Mapper-

files/MAD_Administrator_Manual

The code is open source and can be retrieved from the following SVN repository:

https://gforge.cyfronet.pl/svn/gs2-utils/ibuilder

Anonymous repository access is possible by using anonsvn as login and anonsvn as

password.

6.3 MAPPER Memory and MML repository

MAPPER Memory (MaMe) registry is available at: http://gs2.mapper-

project.eu/mame. The source code of the prototype is available at:

 https://gforge.cyfronet.pl/svn/sint/trunk/mame (the MaMe tool)

 https://gforge.cyfronet.pl/svn/sint/trunk/sintmodel_mapper (the

semantic MAPPER data model)

and is open for read-only access to any interested party (SVN client software is needed to

check out the project).

http://dice.cyfronet.pl/projects/details/Mapper
http://github.com/blootsvoets/jmml
http://gs2.mapper-project.eu/mame
http://gs2.mapper-project.eu/mame

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 20 of 57

A detailed user manual that explains all the functions of MaMe, is available at:

http://dice.cyfronet.pl/projects/details/Mapper-

files/MaMe_User_Manual

For users interested in the internal mechanisms of MaMe and/or wishing to perform an

independent installation of MaMe, the administrator’s manual, which explains these matters,

is provided at:

http://dice.cyfronet.pl/projects/details/Mapper-

files/MaMe_Administrator_Manual

6.4 GridSpace Experiment Tools

An installation of the Experiment Workbench is continuously available at

https://gs2.mapper-project.eu/ew/ in its the most recent stable version. The

associated interpreter registry is accessible for external tools (such as MAD) through a REST

endpoint at https://gs2.mapper-project.eu/ew/gridspace.

Experiment Workbench subpages include comprehensive tutorials and user manuals.

Sample use cases for GridSpace are provided at

http://dice.cyfronet.pl/projects/details/Mapper

The source code of GridSpace (including the Experiment Workbench and Execution

Environment) is maintained as a git repository at

http://dev.cyfronet.pl/gitlab/gs/gridspace.git

6.5 Provenance and Results Management

QUaTRO2 – the tool used for browsing provenance data and experiment results is available

at the following address:

https://gs2.cyfronet.pl/quatro/

A movie presenting how it can be used is available at:

http://dice.cyfronet.pl/projects/details/Mapper

Source code is available from the following locations:

http://dev.cyfronet.pl/gitlab/gs/gridspace.git – source code of provenance

embedded in GridSpace, the module is located in the “provenance” directory;

https://gforge.cyfronet.pl/svn/quatro2/trunk/ – most recent version of the

QUaTRO browser.

http://dice.cyfronet.pl/projects/details/Mapper-files/MaMe_User_Manual
http://dice.cyfronet.pl/projects/details/Mapper-files/MaMe_User_Manual
http://dice.cyfronet.pl/projects/details/Mapper
http://dev.cyfronet.pl/gitlab/gs/gridspace.git
http://dev.cyfronet.pl/gitlab/gs/gridspace.git
https://gforge.cyfronet.pl/svn/quatro2/trunk/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 21 of 57

7 Integration and validation methodology

Integration of MAPPER components is complex and comprises of many layers, from abstract

application composition to execution. Additionally, the infrastructures and overlaying

middleware used to run MAPPER applications often are subject to updates and configuration

changes which may degrade the stability of the MAPPER software stack or make its current

configuration obsolete. In order to discover such inconsistencies a testing methodology was

introduced which, in an automated fashion, checks whether the production setup of all the

tools works fine and, in case the tests do not pass, informs the support team straight away.

The main goal of the methodology is to perform integration tests of tools on the production

platform.

The testing procedure assumes that a set of test cases is available and includes a sample

application producing results which can be tested for validity. A continuous integration tool

such as Jenkins (http://jenkins-ci.org) periodically runs the applications and checks whether

valid results are produced. The process is fully automated and a notification is sent only

when the tests fail (this can be configured independently). Individual test consists of the

following steps:

 xMML structure validation – given application sample stored as an xMML file is

checked against the current production xMML schema,

 GS experiment structure – the xMML application sample is transformed into a GS

experiment and its structure is validated,

 experiment execution – the resulting experiment is executed by providing a

predefined set of parameters which should produce valid results.

The transformation and execution are run on the production instances of MAPPER tools. To

make this possible, each tool exposes a dedicated REST interface to perform testing tasks.

This methodology has proven useful and several problems were quickly resolved in this

manner (e.g. computational site downtime, module reorganization on one of the sites,

certificate expiration, etc.)

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 22 of 57

8 Tools integration with external modules

8.1 Integration with MAPPER services

Below, we summarize MAPPER services integrated into GridSpace by executor mechanism.

The detailed integration was described in D 4.2 and D 5.2. The detailed description of

GridSpace AHE and QCG executors can be found in subsection 12.3.2 of this document.

executor Description and availability

Application

Hosting

Environment

(AHE)

The Application Hosting Environment, AHE, provides interfaces to run

applications on resources provided by national and international grids

(UNICORE, Globus and QCG grids) in addition to local departmental

and institutional clusters meaning that a user can use a single AHE

installation to access resources for example from the UK NGI, Polish

NGI and PRACE.

More details about AHE can be found in D 4.2 and D 5.2

AHE is available at http://www.mapper-project.eu/web/guest/ahe

QCG-Broker

(QCG)

QCG-Broker is a meta-scheduling system that manages the whole

process of remote job submission

and advance reservation to various batch queueing systems and

subsequently to underlying clusters

and computational resources. QCG-Broker deals with various meta-

scheduling challenges e.g., co-allocation, load-balancing among

clusters, remote job control, file staging support or job migration. More

details about QCG can be found in D 4.2 and D 5.2

QCG is available on http://www.qoscosgrid.org/trac/qcg-broker

8.2 Integration with scientific software

Below we summarize the most important software required by multiscale application
integrated into GridSpace by interpreter mechanism in the MAPPER project

Interpreter Used by application description

The Multiscale

Coupling Library

and Environment

(MUSCLE)

In-stent restenosis, Irrigation

Canals, Gene Regulatory

Networks

a portable framework to do multiscale

modeling and simulation on

distributed computing resources

available at

http://apps.man.poznan.pl/trac/muscle

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 23 of 57

CPMD Nanomaterial a parallelized implementation of

Density Functional Theory,

particularly designed for ab-initio

molecular dynamics.

Available at http://www.cpmd.org/

CPMD2CUBE Nanomaterial A companion program to CPMD and

is used to convert CPMD produced

data to format understood by other

packages (e.g. GAUSSIAN).

LAMMPS Nanomaterial Large-scale Atomic/Molecular

Massively Parallel Simulator -

available on

http://lammps.sandia.gov/

MSI2LMP_POT Nanomaterial Post processing tool of LAMMPS

Canal Visualizer Irrigation Canals Visualization tool for irrigation canals

simulation

Mencoder Irrigation Canals, Fusion General video decoding, encoding

and filtering tool used in MAPPER for

visualisation of simulation results

Helena Fusion Plasma equilibrium codeused in

fusion modelling application

Ilsa Fusion Plasma equilibrium codeused in

fusion modelling application

Abaqus CrushBox software for finite element analysis

and computer-aided engineering

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 24 of 57

9 Evaluation of tool efficiency

According to the description of Task 8.5 in the DoW we measure the efficiency of the WP8

tools by comparing the effort of coupling applications by hand with the effort of coupling them

using the tools. The tools support the process of creation of multiscale applications by

enabling users to share created modules along with descriptions of their connections, and

reusing modules in different configurations. The connection scheme can be created by the

user on conceptual level using visual tools. Having stored all required data, it is possible to

automate production of an executable from the resulting connection schema. Actual

execution is supported by the ability to choose required resources, then start and monitor

execution from a single web-based entry point. Following execution, the output data should

be fetched and presented to the user. In Tab. 1, we describe the actions that can be

facilitated by WP8 tools.

Tab. 1 Actions involved in developing and execution of multiscale applications that can be facilitated by

WP8 tools.

Action Tool Support

description of single-scale

models

for regular applications the description is registered in

MaMe by using an interactive user interface

design and implementation of

single-scale modules

implementing models

can be done using specific frameworks such as

MUSCLE

design of connection schema

among singe-scale modules

interactive visual design in MAD; the previously

designed connection schemes can also be loaded from

an xMML repository; automatic generation of connection

schema

preparation of executable

application from the

connection schema

automatic generation of experiment by MAD (several

milliseconds) – this assumes that implementations of

single-scale modules are already available

mapping modules to (possibly

different) external services

that access e-infrastructures;

setting parameters of these

services

done by the user via a unified web interface (GridSpace

EW); interactive process

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 25 of 57

execution of modules initialization of execution is done from a unified web

interface by pressing the run button;

monitoring standard output

and error

for SSH-accessible resources, standard error and output

can be monitored in the GridSpace EW, enabling users

to interact with running modules

using interoperability layer convenient usage of features of underlying services

(QCG-Broker, AHE)

fetching results automatically fetched and visible in GridSpace EW by

means of standard protocols – SSH and GridFTP

viewing results visible in GridSpace EW; additionally the QUaTRO

browser can search for copies of experiment results

viewing provenance results QUaTRO browsing and searching provenance data

To evaluate the efficiency of tools, we have used the following metrics:

User experience with new MAPPER tools measured by: feedback forms. During the

second seasonal MAPPER school http://www.mapper-project.eu/web/guest/second-

seasonal-school we have measured the usability of MaMe, MAD and GridSpace Experiment

Workbench tools based on [Brooke]. The obtained average SUS score for the tools was 70

points (out of 100 possible) . This average was based on answers provided by the most

active 15 participants.

Mean time required to train a new user to use MAPPER tools measured during

Seasonal Schools in Task 2.4. The tutorial conducted during the second MAPPER

seasonal school was successful and consisted of a 30-minute presentation and 60 minutes

of hands-on exercises available at http://www.mapper-project.eu/web/guest/84. There were

no major problems in using the tools by school participants according to their responses in

the SUS survey; e.g. for the question “I think the system was easy to use” the answers were:

33% – fully agree (5/5 possible points), 47% – agree (4/5 points), 20% OK (3/5 points). There

were no answers lower than 3 points

Statistics of successful execution of complete multi-scale simulations measured on

the basis of data obtained by provenance services created in Task 8.4; We have used

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 26 of 57

the provenance system to track execution of individual simulation stages. Overall, users

completed 2326 snippet runs which can be interpreted as executions of a single simulation

stage. Additionally, we can count other actions performed by users indicative of tool usage:

 the GridSpace login operation was performed successfully 1563 times,

 users converted their MAD MML designs to GridSpace experiments 232 times,

 GridSpace experiments were created (including those based on MML) 553 times.

All xMML of applications are stored in the xMML repository and are available through MAD at

https://gs2.mapper-project.eu/mad (press the "open from repository" button). A summary of

the usage of tools by applications is described in Tab. 2. A detailed report on the applications

can be found in D7.3 and their integration is described in D5.2.

Tab. 2 Using WP8 tools in MAPPER applications

Application name Field Status of using WP8 tools

In-stent restenosis physiology modules registered in MaMe,

connected in MAD, executed in

EW using SSH and QCG

executors; successfully applied

and described in [Borgdorffb]

Irrigation canals hydrology modules registered in MaMe,

connected in MAD, executed in

EW using SSH and QCG

executors; successfully applied in

[Belgacem_a, Belgacem_b], used

as a basis for the tutorial at the

first seasonal MAPPER school in

London http://www.mapper-

project.eu/web/guest/mad-mame-

ew

clay-polymer

nanocomposites

Nano-material science modules registered in MaMe,

connected in MAD, executed in

EW by SSH executor and AHE

executor successfully applied and

described in [Rycerz_a]

reverse engineering

of gene-regulatory

networks

Computational Biology) modules registered in MaMe,

connected in MAD, executed in

EW by SSH and QCG executors

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 27 of 57

equilibrium-stability fusion modules registered in MaMe,

connected in MAD, executed in

EW; parameter study achieved

using subsnippets mechanism;

Tutorial example shown during the

second seasonal MAPPER school

in Barcelona http://www.mapper-

project.eu/web/guest/second-

seasonal-school

transport turbulence

equilibrium workflows

fusion modules registered in MaMe,

connected in MAD, executed in

EW

Heme LB physiology Modules registered in MaMe and

connected in MAD

Crushbox (external) metallurgy Executed in EW; parameters

study achieved using the

subsnippet mechanism;

The number of single-scale models incorporated and used within the MAPPER infrastructure,

measured by taking information from the models’ registry developed in Task 8.2, is as

follows: 45 single-scale models, 42 mappers and two filters are already registered in the

model registry (MaMe), representing almost all MAPPER applications, in addition to a test

application. This number can be monitored online at http://gs2.mapper-

project.eu/mame

Number of new scientific results from applications created by MAPPER tools

measured by number of publications in well recognized journals/conferences; the

results were published in the following publications:

 using WP8 tools with the In-Stent Restenosis Application [Borgdorff_b]

 using WP8 tools with the Clay-Polymer Nanocomposites application [Rycerz_a,

Groen_b, Suter]

 using WP8 tools with the Irrigation Canals application [Belgacem_a, Belgacem_b]

 paper on WP8 tools [Rycerz_b]

 A demo on how to use WP8 tools using the fusion loosely-coupled equilibrium-

stability application example, was shown at the 2nd seasonal school.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 28 of 57

 Results of using WP8 tools for an external metallurgical application were presented

as a poster (“Efficient Execution of Grid-based Multiscale Applications for

Metallurgical Industry”) by B. Wilk et al. at the Summer School on Grid and Cloud

Workflows and Gateways, 1-6 July 2013, Budapest, Hungary.

Statistics from monitoring MAPPER web pages

All statistics presented below have been calculated for the 1 January 2013 – 30 June 2013

period using Google Analytics.

Definitions

Page Views – total number of pages viewed. Repeated views of a single page are counted.

Unique Page Views – number of visits during which the specified page was viewed at least

once. A unique page view is counted for each page URL + page title combination.

Visit – a group of interactions that take place on the website within a given timeframe. For

example, a single visit can contain multiple page views, events, social interactions, custom

variables and e-commerce transactions.

Pages/Visit (Average Page Depth) – the average number of pages viewed during a visit to

the website. Repeated views of a single page are counted.

Avg. Visit Duration – the average duration of a session.

Tool Statistics

As the MaMe, MAD and GridSpace EW are all web-based tools, it is possible to monitor their

usage as web pages. All tools are accessible from a single entry point, i.e. the

http://gs2.mapper-project.eu web site. Below, we present statistics (pageviews and

visits) for that site as a whole, and for each tool separately.

Pageviews

Tab. 3 Number of page views for the http://gs2.mapper-project.eu web site

Page Views Unique Page Views

1976 990

http://gs2.mapper-project.eu/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 29 of 57

Fig. 5 Number of page views for the http://gs2.mapper-project.eu web site (i.e. MAD, MaMe and

GridSpace EW in total)

Tab. 4 Number of page views for MAD, MaMe and GridSpace EW tools separately.

Tool name Page Views Unique Page Views

MAD 1503 700

MaMe 1000 435

GridSpace EW 1392 633

Fig. 6 Number of page views for MAD, MaMe and GridSpace EW tools.

Visits

Tab. 5 Number of visits for the http://gs2.mapper-project.eu web site

Visits Pages/Visit Avg. Visit Duration

437 4.52 00:09:56

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 30 of 57

Fig. 7 Number of visits for the http://gs2.mapper-project.eu web site (i.e. MAD, MaMe and GridSpace EW

in total)

.

Fig. 8 Location of visitors (cities) for the http://gs2.mapper-project.eu website.

Tab. 6 Number of visits for the MAD, MaMe and GridSpace EW tools separately.

Tool name Visits Pages/Visit Avg. Visit
Duration

MAD 274 5.49 00:13:10

MaMe 112 8.93 00:19:02

GridSpace EW 212 6.57 00:15:06

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 31 of 57

Fig. 9 Number of visits for MAD, MaMe and GridSpace EW separately

Statistics from monitoring manuals web pages

Below, we present statistics for tool manuals available from the

http://dice.cyfronet.pl/projects/details/Mapper website.

Page Views

Tab. 7 Number of page views for tool manuals

Manual name Page Views Unique Page Views

All 160 107

MAD User Manual 39 31

MAD Administrator Manual 30 18

MaMe User Manual 33 26

MaMe Administrator Manual 30 18

GridSpace2 Experiment

Workbench – Administrator

Manual

28 14

Visits

Tab. 8 Number of visits for tools manuals

Manual name Visits Pages/Visit Avg. Visit
Duration

MAD User Manual 13 24.69 00:22:27

MAD Administrator Manual 14 27.14 00:23:07

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 32 of 57

MaMe User Manual 26 12.38 00:10:36

MaMe Administrator Manual 11 25.36 00:22:29

GridSpace2 Experiment

Workbench – Administrator

Manual

13 26.77 00:26:42

Fig. 10 Location of visitors (cities) for the tool manuals available at

http://dice.cyfronet.pl/projects/details/Mapper website.

Download statistics of the tool packages

Below we present download statistics of packages available at

http://dice.cyfronet.pl/projects/details/Mapper. Our tools are easily

accessible via a web browser, at http://gs2.mapper-project.eu, so users do not

need to install them on their own computers. This explains the disparity between the total

number of user visits on the tools’ pages (presented in the previous section), and the number

of direct tool downloads (shown in the table below).

GridSpace2, MAD and MaMe are all provisioned in the SaaS model and most users use

these tools online, through the http://gs2.mapper-project.eu website.

http://dice.cyfronet.pl/projects/details/Mapper
http://gs2.mapper-project.eu/
http://gs2.mapper-project.eu/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 33 of 57

Tab. 9 Download statistics for the tool packages.

Tool name Number of downloads

ibuilder-gwt-0.2.0.war 8

ew-2.5.14.war 6

sint_upper_model-0.1.8.gem 1

sintmodel_mapper-0.1.5.gem 1

All 16

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 34 of 57

10 Summary and Conclusions

This deliverable presents the final prototype of multiscale programming and execution tools,

their architecture, functionality and implementation according to the design presented in

D8.1., along with changes with respect to the second prototype described in D8.3.

The presented tools are used to validate the proposed approach to unified description and

execution of multiscale simulations on e-infrastructures. To achieve this goal we had to find

solutions to issues such as multiscale model languages, resource-independent descriptions

of applications, transformation of the former into the latter and, finally, execution of the

resulting realization in a distributed environment. These problems were addressed via

appropriate choice of the modeling language, its transformation into an executable

experiment (independent of the actual realization of the application), and tools which enable

distributed execution of said experiment.

The presented approach allows for composability, reusability and sharing of multiscale

simulations, and is implemented in the framework of the presented tools. The steps required

to create such an application include: modeling of single-scale phenomena, describing

models in MML and designing the corresponding software module. Subsequently, by using

descriptions, individual modules can be connected to form a multiscale application. The

connections used by the application can be stored for reuse. The connection schema is

translated into an executable and infrastructure-independent multiscale in silico experiment

which can be executed by the user after providing information about required resources – in

fact, every module can be executed by a different part of the distributed infrastructure.

Access can be either direct (using SSH) or indirect, by external services such as AHE or

QCG that provide additional features, including unified access to resources, reservations and

co-allocation. The introduced environment facilitates (or even automates) most of the above

mentioned steps.

In conclusion, we believe that the proposed method and environment have proven to be very

successful in enabling scientists to build multiscale applications. The use of unified

descriptions facilitates development of different applications from a single set of modules and

switching between different versions of modules offering specific features. It can also be

applied to validate the created simulations against different realizations. The accessibility of

web-based tools enables applications to be shared among scientists working in the same

area. Additionally, support for interactivity (i.e. user interaction during application execution)

is provided.

Efficiency evaluation results (described in Section 8) show that the proposed approach is

successful and that it can be used for multiscale applications in various research fields.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 35 of 57

11 References

[Alder] Alder, G.: Design and implementation of the JGraph swing component, Technical

Report, 2001

[Ambrozinski] M. Ambrozinski, K. Bzowski, L. Rauch, M. Pietrzyk: Application of statistically

similar representative volume element in numerical simulations of crash box stamping,

Archives of Civil and Mechanical Engineering, Volume 12, Issue 2, June 2012, Pages 126–

132

[Belgacem_a] M. Ben Belgacem, B. Chopard, J. Borgdorff, M. Mamonski, K. Rycerz, D.

Harezlak: Distributed Multiscale Computations using the MAPPER framework Procedia

Computer Science, Volume 18, 2013, Pages 1106-1115

[Belgacem_b] M. Ben Belgacem, B. Chopard and A. Parmigiani: "Coupling method for

building a network of irrigation canals on distributed computing environment" to be published

in Proceedings of 10th International Conference on Cellular Automata for Research and

Industry, ACRI 2012, Santorini Island, Greece, September 24-27, 2012. Series: Lecture

Notes in Computer Science, Vol. 7495

[Borgdorff_a] J. Borgdorff, J.-L. Falcone, E. Lorenz, C. Bona-Casas, B. Chopard, and A. G.

Hoekstra: “Foundations of distributed multiscale computing: Formalization, specification, and

analysis,” Journal of Parallel and Distributed Computing, vol. 73, pp. 465–483, 2013.

[Borgdorff_b] J. Borgdorff, C. Bona-Casas, M. Mamonski, K. Kurowski, T. Piontek, B. Bosak,

K. Rycerz, E. Ciepiela, T. Gubala, D. Harezlak, M. Bubak, E. Lorenz, A. G. Hoekstra: A

Distributed Multiscale Computation of a Tightly Coupled Model Using the Multiscale Modeling

Language. Procedia CS 9: 596-605 (2012)

[Borgdorff_c] J. Borgdorff, M. Mamonski, B. Bosak, D. Groen, M. Ben Belgacem, K.

Kurowski, A. G. Hoekstra: Multiscale Computing with the Multiscale Modeling Library and

Runtime Environment Computer Science, Volume 18, 2013, Pages 1097–1105

[Brooke] John Brooke Usability evaluation in industry, SUS - a quick and dirty usability scale

(CRC Press, Boca Raton, FL), pp 189–194 (1996)

[Ciepiela] E. Ciepiela, D. Harezlak, J. Kocot, T. Bartynski, M. Kasztelnik, P. Nowakowski, T.

Gubała, M. Malawski, M. Bubak: Exploratory Programming in the Virtual Laboratory. In:

Proceedings of the International Multiconference on Computer Science and Information

Technology, pp. 621-628 (October 2010),

 [Groen_a] D. Groen, J. Borgdorff, C. Bona-Casas, J. Hetherington, R. W. Nash, S. J.

Zasada, I. Saverchenko, M. Mamonski, K. Kurowski, M. O. Bernabeu, A. G. Hoekstra and P.

V. Coveney: fidelity multiscale biomedical simulations, Interface Focus 2013 3, 20120087,

published 21 February 2013

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 36 of 57

[Groen_b] D. Groen, J. Borgdorff, S. Zasada, C. Bona-Casas, J. Hetherington, R. Nash, A.

Hoekstra, P. Coveney: A Distributed Infrastructure for Multiscale Biomedical Simulations,

accepted by the Virtual Physiological Human Conference 2012

[Hoekstra] Hoekstra, A.G., Lorenz, E., Falcone, J.-L., Chopard, B. Toward a Complex

Automata Formalism for MultiScale Modeling, in: International Journal for Multiscale

Computational Engineering 5, 6, 491--502.

[Gubala] T. Gubala, M. Bubak, P. M. A. Sloot: Semantic Integration of Collaborative

Research Environments. In: M. Cannataro (ed.) Handbook of Research on Computational

Grid Technologies for Life Sciences, Biomedicine and Healthcare, Chapter 26, pp. 514-530,

Information Science Reference, IGI Global (2009)

[Rycerz_a] K. Rycerz, E. Ciepiela, G. Dyk, D. Groen, T. Gubala, D. Harezlak, M. Pawlik, J.

Suter, S. Zasada, P. Coveney, M. Bubak: Support for Multiscale Simulations with Molecular

Dynamics Procedia Computer Science, Volume 18, 2013, Pages 1116-1125

[Rycerz_b] K. Rycerz et al.: Composing, Execution and Sharing of Multiscale Applications,

submitted to Future Generation Computer Systems, in review

[Mendes] Mendes, P., Sha, W., Ye, K.: Artificial gene networks for objective comparison of

analysis algorithms, Bioinformatics 2003, 19(90002): 122-129, 2003.

[Savageau] Savageau, M.A.: Biochemical systems analysis: A study of function and design

in molecular biology, Addison-Wesley, Reading, Mass., 1976.

[Suter]J. Suter, D. Groen, L. Kabalan and P. Coveney: Distributed Multiscale Simulations of

Clay-Polymer Nanocomposites, Materials Research Symposium, San Francisco, United

States of America, April 2012.

[Vohradsky] Vohradský, J.: Neural network model of gene expression. The FASEB Journal

15, 846, 2001.

[Voit] Voit, E.O. & Schwacke, J.H.: Understanding through modeling: A historical perspective

and review of biochemical systems theory as a powerful tool for systems biology. Konopka,

A.K. (editor), Systems biology: Principles, methods and concepts, pp. 28-77, 2007.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 37 of 57

12 Annex: Detailed description of tools

12.1 JMML library

JMML library handles MML. Specifically, it can read and write xMML and it can generate

gMML. It is a Maven project with three modules:

 A utilities module jmml-util that contains data structures such as lists and graphs, and

SI unit handlers.

 A specification module jmml-specification that converts from and to xMML using the

Java Architecture for XML Binding (JAXB). It has custom classes that facilitate easy

manipulation of xMML.

 An API jmml-api to create a coupling topology, task graph or scale separation map

from a xMML specification. It can also output a task graph or gMML to pdf.

The main part of the jmml-specification is generated from the W3C XML Schema of xMML by

the xjc tool of JAXB. This means that when a new version of xMML is released, jMML can

easily adapt. It also means that it can always read, modify and write a certain version of

xMML. On top of these generated sources, additional verification of couplings and datatypes

is performed. This happens at any time that the xMML specification is changed in jMML.

Once the code is generated, xMML is no longer validated using the XML Schema when an

xMML file is read. Instead, xMML should be validated before it is passed to the jmml-

specification module.

The jmml-api module can analyze the xMML specification in several ways. First of all, it can

detect which submodels need to be started initially for the model to calculate correctly by

constructing the coupling topology. It can output the coupling topology as a Graphviz file,

which can then be converted to PDF by the dot tool of Graphviz. The resulting PDF then

contains gMML. It can also generate the task graph of a specification, assuming that the time

scales of all submodels are regular. If a model will run into a deadlock, given the xMML

specification, this will be detected and reported on the command line and, if converted to

PDF, in the resulting PDF file. The task graph algorithm is memory-efficient and a task graph

can be manipulated after it is generated. Graphviz and PDF viewers, on the other hand, can

not always handle graphs that are as large as a full task graph. Finally, it can detect the

scales of the different submodels, and whether they are separated or not, and make a scale

separation map. The map can be viewed as a window or converted to SVG using the Batik

SVG converter.

http://jaxb.java.net/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 38 of 57

The jmml-api includes a command-line tool that can generate a coupling topology, task

graph, or scale separation map from a given xMML file. The only prerequisite is that such an

xMML must have all XInclude files processed in advance.

Anyone that wants to manipulate xMML can import the first two models into their Java

project. If they want to generate a task graph or coupling topology the third module can be

used.

The jMML library can also output a MUSCLE configuration file for a given xMML file and

generate a directory structure with preliminary code and base code already filled in based on

the xMML file.

To install jMML, Maven must be installed. Then, download jmml and go the directory. There

you can run

bin/jmml

which will show the options, for example, running

bin/jmml path/to/xml.xmml --cxa isr.cxa.rb

will generate a MUSCLE configuration file.

12.2 MAD

The following sections contain the description of MAD's main features. Following publication

of the second prototype (D8.3), work on integrating a reservation management view was

performed which included interfacing with the MAPPER reservation portal and the QCG

broker. Additionally, many UI improvements were introduced in the final version.

Transforming gMML to GS experiment

The MAD tool supports exporting MML diagrams both to the xMML format (for describing

high-level application structure) and to the GridSpace experiment format. In particular, the

experiment can contain CxA snippets for MUSCLE applications that can be executed on

various infrastructures (e.g. QCG).

Importantly, prior to exporting a multiscale application as a GridSpace experiment, the MAD

tool needs supplementary information from the Interpreter Registry provided by the

Experiment Workbench. The registry tells what software can implement particular submodels

and which infrastructure elements can run such software. This information is intentionally not

included in the MML description in order to keep it independent of software that implements

http://maven.apache.org/

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 39 of 57

submodules. The MAD tool inquires MaMe for interpreters that implement given submodules,

and then inquires the Interpreter Registry about what parameters and codes are required by

the interpreters. Therefore, MAD users can choose the interpreter that suits their needs and

provide all parameters and codes it requires. Such combination of information is then

sufficient to construct a GridSpace experiment.

While each experiment designates interpreters that are to be used to implement submodules,

the selection of infrastructure elements or sites to be used to execute the experiment

remains ambiguous and is deferred until the application execution step carried out through

the GridSpace Experiment Workbench tool. As a result, the same experiment can be run in

many different ways by harnessing different infrastructures.

CxA configuration support

In the process of building the final GS experiment from the gMML representation, the CxA

configuration comprises a single code snippet. The snippet is generated by filling in a

common template with appropriate sections which include classpath, kernels, parameters

and connections. Data required to compose individual sections is retrieved from the MaMe

registry. The current template of the CxA configuration is given in

Fig. 11

configuration file for a MUSCLE CxA

abort "this is a configuration file for to be used with the

MUSCLE bootstrap utility" if __FILE__ == $0

add build for this cxa to system paths (i.e. CLASSPATH)

m = Muscle.LAST

m.add_classpath "${classpath}"

m.add_libpath "/user/lib"

cxa configuration section

cxa = Cxa.LAST

cxa.env["cxa_path"] = File.dirname(__FILE__)

declare kernels

${kernels}

parameters

${parameters}

configure connection scheme

cs = cxa.cs

${connections}

Fig. 11 CxA configuration template filled in by MAD according to the gMML contents.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 40 of 57

The CxA classpath section holds the locations of .jar (Java Archive) files containing

implementations of the relevant MUSCLE kernels. The locations are specific for particular

MAPPER submodules and are provided during the process of registration in the MaMe

registry. For version 2 of MUSCLE, this is modified by using cross-infrastructure modules;

hence the Java classpath is configured locally on the computation site. This gives more

generic control over local site configuration which becomes transparent to the application.

The kernels section defines a list of kernels taking part in the computation. Each submodule

and mapper from the gMML description is assigned a kernel. The order in which kernels are

defined is irrelevant in the CxA configuration. Each kernel can be configured with an

independent list of parameters in the parameters section. MAD takes parameter names and

values from the MaMe registry.

Tha final CxA configuration section defines connections between kernels. It is built according

to the graphical representation of the application.

Module property editor

The bottom part of the interface is occupied by a property editor (see Fig. 12) which allows

users to change properties (including simulation parameters) of MML components. Editor

tabs correspond to individual nodes in the workspace area, unless a tightly-coupled section

is present in which case a single tab combines the section components’ properties. The

editor fills in the property forms with default values coming from the MaMe registry. If

present, different MML component implementations can be chosen in the property editor.

Another feature of the property editor is handling of global parameters which are defined in

MaMe in an MML component namespace. This may introduce conflicts if the same global

property is imported by a few components. Such cases are discovered and a proper warning

is produced. The user may pick a global parameter value of one of the conflicting

components or specify a new one. When an application is saved all changes applied in the

editor are saved and restored when the application is being imported into MAD.

Fig. 12 Property editor allowing for submodule parameter modification

xMML repository

The xMML repository is made available as part of the MaMe registry and allows for storing

and retrieving of multiscale applications written in the xMML format. MAD utilizes this by

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 41 of 57

providing xMML repository widgets (see Fig. 13). This allows users to compose their

applications and afterwards save and share them with others. Each stored application is

annotated with a name and a short description. If an application with the same name already

exists, it is overwritten and placed in the archive for later recovery. Saved applications cannot

be removed directly from MAD but it can be done through MaMe by providing valid

credentials. To access the repository view the relevant menu items should be used. The

presented application list is straightforward and shows all the saved items without any

access restrictions.

Fig. 13 Application list of the xMML repository

Module management

The first prototype of MAD generated an executable form of tightly-coupled sections by using

(among others) low-level properties which were specific for an execution environment

(infrastructure site) and were defined in MaMe. This posed interoperability problems on the

modeling level. Additionally, the feature of executing particular parts of tightly-coupled

sections on different execution sites brought extra difficulties in generating proper mapping

descriptions. In the second prototype mapping between parts of tightly-coupled sections and

execution sites was moved to the GridSpace Experiment Workbench (EW) which enabled

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 42 of 57

the modeling layer to operate on abstracted dependencies. This, however, required the EW

experiment generation process to be modified. The modification is in place and passes

correspondences between MML components belonging to a tightly-coupled section and

abstract module names. This enables different mapping strategies to be implemented in EW

in order to optimally use the available infrastructure and keep the application descriptions

abstract.

Reservation support

One of the prominent functionalities of the MAPPER platform is handling of computational

resource reservations. In MAD this is supported when exporting an application to its

executable form. Reservations can be mapped to individual submodules comprising the

application by using the dedicated user interface shown in Fig. 14.

Fig. 14 Mapping among reservations and application submodules

Each submodule can be assigned different types of reservations which are described below:

 no reservation – given submodule is not assigned a reservation,

 automatic – reservations are automatically scheduled within a specified time window,

 manual – reservations are scheduled manually and a corresponding reservation

identifier is provided by the user,

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 43 of 57

 reservation identifier – one of the available reservations is assigned (chosen from a

list).

The reservation creation interface provided by the QCG component was embedded into

MAD to offer better user experience and allow for managing the reservations from just one

tool. Besides GUI integration, MAD also utilizes a QCG client library to obtain the list of

available reservations.

12.3 GridSpace

Below we describe all features and improvements that were implemented in GridSpace

during the MAPPER project. From the software engineering point of view, the architecture of

EW was changed and decomposed into several separate Java projects. The

cyfronet.gs2.ew module is the EW web user interface, while the remaining modules are

server-side libraries which we refer to later as the Execution Engine. In the following

subsections we describe changes in both the GridSpace Experiment Workbench and the

GridSpace Execution Engine.

 cyfronet.gs2.experiment – classes and APIs enabling construction of experiments

and serializing them to the XML format through JAXB technology, used both by the

Experiment Workbench and MAD that exports the multiscale application description in

the experiment format;

 cyfronet.gs2.executor – classes and APIs defining the contract between GridSpace

and computational facilities;

 cyfronet.gs2.?-executor – specific implementation of an executor, e.g. SSH;

 cyfronet.gs2.core – engine that carries out experiment execution;

 cyfronet.gs2.ew – web interface and server backend that incorporate all the above-

listed modules.

12.3.1 Features added to GridSpace Experiment Workbench during

the MAPPER project

One-click opening of MAD-generated experiments. The GridSpace Experiment

Workbench (EW) can now open experiments generated by external applications, most

notably the Multiscale Application Designer (MAD), using a dedicated HTTP endpoint

(/workbench/open). Making HTTP POST request to such URLs results in opening the

experiment provided as the content of the request. If the user is not yet authenticated, the

login form is displayed instead. Following successful authentication, EW is opened with the

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 44 of 57

experiment that has been passed from the external application. Thanks to this feature, MAD

can now offer one-click EW redirections and open the experiment generated on the fly by

MAD.

Support for long-running experiments. One of the major deficiencies of GridSpace

Experiment Workbench in the first prototype was lack of proper handling of long-running

experiments. EW didn’t provide any means to run experiments in an unattended way, so the

users had to be logged into EW throughout the experiment run time, keeping the session

with EW open. In the second prototype, EW handles experiment execution on the server side

thus allowing users to log out from EW and re-log again later to check the status of

execution, which is carried out continuously “in the background”. Technically speaking, this

was achieved by decoupling user sessions with the EW server from the underlying execution

service that can operate without the user being logged in. When the user logs out of EW, all

their experiment executions are detached from the user session and kept “parked” on the

server side, which happens without interrupting the computations. Once the user logs back

in, experiment executions are brought back from the server-side “parking” and reattached to

the user’s session. As a result, the user’s workbench becomes persistent in such a way that

the user can log in and out at any time, and even when the session expires the workbench

state is persisted on the server side and can be retrieved when the user logs in again.

Moreover, users are notified when the session expiration time is about to be reached and

asked if the session has to be prolonged.

Improved URL handling. Following up with improvements aimed at supporting long-running

experiments, the URL handling mechanism has been reworked in order to preserve the EW

user interface state. Currently, the URL encodes the state of the user interface; thus

subsequent references to a given URL retrieve the EW user interface in exactly the same

state. That enables users to save interface state as an URL and retrieve it later by navigating

to that URL. What is more, web browser history management is now supported as “back”

and “refresh” buttons work in the expected way.

Pluggable openers for visualizing and editing data files. In order to deliver visualization

and editing of complex data files, the so-called openers have been introduced. An opener is

a web application powered by e.g. an applet, a javascript library, a flash component, or any

other rich internet application technology. Openers are served by EW and run within users’

web browsers sharing a secure session with EW. Openers are pluggable and can be added

to EW at any time by their provider. As a result, openers can be developed and delivered

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 45 of 57

independently. In particular, existing web-based tools can be reused and adopted to fit the

EW architecture. Openers interoperate with EW using its RESTful interface dedicated for

openers: each data file stored on an executor is assigned an HTTP URL and can be fetched

and saved using HTTP GET and PUT requests respectively. Openers are then able to GET a

data file in a given (supported) file format and deal with it in specific ways, e.g. visualizing or

opening it for edition. The modified file can be then PUT back on the server and stored in its

original location.

Configuration Management. EW offers an interface through which administrators can

manage all configuration of EW and underlying GridSpace libraries. This properly secured

panel provides an easy way to change the configuration via a web browser, with changes

applied immediately during runtime. This brings more dynamicity in managing EW and

releases administrators from having to recompile or restart EW.

Interface for GridSpace Execution Engine Features: EW provides a user interface for the

GridSpace Execution engine features described in the following subsection.

12.3.2 Futures added to GridSpace Execution engine during the

MAPPER project

In order to support the features offered by the GridSpace EW and other MAPPER tools, the

following functionality has been provided.

Abstraction layer for executors and portability of experiments. The computational

resource model was altered in order to introduce a layer of abstraction above the vast range

of ways in which computational facilities are made accessible – including SSH clusters, QCG

brokers, AHE-accessible resources and others, not known in advance. According to the new

model, the GridSpace experiment contains snippets that are associated with abstract

interpreters (regardless of where they’re actually deployed). Interpreters are then installed on

a set of computational facilities, binding them with executors. GridSpace incorporates the

Interpreter Registry that stores these bindings. The additional notion of the Executor

Descriptor was introduced in order to supplement the experiment with instructions needed

during the execution phase concerning executors which are to handle individual snippets.

Consequently, the experiment itself became a portable format in terms of being more high-

level, as the information about which infrastructure components should be used in its

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 46 of 57

execution is provided separately on the execution stage, in the Execution Descriptor data

structure through the Experiment Workbench UI.

SSH-Executor. As a consequence of the new abstraction layer of executors, the

implementation of SSH-Executor was decoupled from the base code of GridSpace and

provided as a standalone pluggable and interoperable module.

QCG-Executor. Integration with QCG middleware is ensured by using a dedicated Java

client exposing the QCG broker’s API. The client is used in both Multiscale Application

Designer (MAD) and GridSpace tools. The former uses the client to retrieve reservation

information used during application composition. The latter uses it to submit computation

tasks to the broker. In both cases authentication is performed by passing the user’s proxy

certificate when invoking broker operations.

In MAD, reservation information is presented to the user to build a mapping between

individual reservations and application modules. This information is passed from MAD to

GridSpace EW to be included in the job profile, which is a description of the tasks submitted

to the QCG broker. Reservations can also be created in MAD by using an embedded view

(Flash application) served by the broker. In this way the user is faced with an integrated

system, capable of controlling the entire lifecycle of the application.

The QCG client is integrated with MAD and GridSpace by using the Maven build system;

hence updating to new versions is a straightforward process.

AHE-Executor. Integration with AHE is provided on the basis of a modified AHE Client

written in Java. The primary functions of this executor are user authentication and running

jobs. Modifications were introduced in the AHE Client so that it is easily embeddable in other

Java applications. Below we present a detailed list of functions exposed and provided by the

AHE Executor:

 login – users are able to authenticate themselves; two methods of authentication are

supported (in both cases the executor establishes a GridFTP connection to the file

staging server that the runner machine will use for staging input and output).

 using a proxy certificate – the executor sends it to the AHE MyProxy server with help

from the AHE Client. The proxy is protected by GridSpace-managed temporary

credentials.

 user name and password – this mode assumes that the user has manually uploaded

his/her proxy to MyProxy. The Executor expects a valid username and password and

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 47 of 57

then attempts use them to authenticate with MyProxy and download the proxy

certificate.

 execute – this allows users to run code snippets with the GridSpace web interface.

The modified AHE Client creates and submits AHE Job Objects to the AHE runner

machine. Each job object contains all the information about the job, including the

name of the application, its parameters as well as any other input and output.

Following submission the AHE Client periodically polls the job runner for the job

status. Once the job finishes, all involved components are notified, and the output is

presented to the user. The AHE Client used by this operation does not stage any

input or output (this is different from the behavior of the standalone client). The

reason for this is that all resources needed for job execution are managed by

GridSpace directly on the staging server and therefore are already in place.

Since the last report, the AHE Executor has been extended with reservation handling.

The user is able to reserve resources beforehand, and supply a reservation identifier

along with the jobs to be executed. The execution process can be interrupted, and

cancelled at any stage. AHE handles such interruptions according to its procedures.

Interpreters that are relevant for running sample multiscale applications have been

configured – in particular the LAMMPS and CPMD tools installed on AHE machines

are available through GridSpace. Additionally, the configuration was extended so it is

possible to run AHE jobs on all infrastructure nodes that support AHE Execution by

themselves.

 logout – the connection to the staging server is closed. All temporary objects and

authentication information is removed or discarded.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 48 of 57

Fig. 15 The connections between individual elements in the GridSpace and AHE.

Fig. 15 shows the connections between individual elements in the GridSpace-AHE

integration. The AHE Executor, operating on the GridSpace machine, manages

authentication information by communicating with MyProxy server through the AHE Client.

Input data is sent to the staging server via a GridFTP client, and then execution is performed

by signaling the AHE Server. Once the execution initiates, appropriate runner machines

stage input, execute applications and process data. Output is stored on the staging server.

Following execution, any output can be retrieved with the GridSpace file manager.

A new AHE-Executor has been developed in accordance with the new abstraction schema

described above.

Login with proxy certificate generated on the fly. Since some executors (such as AHE

and QCG) use grid certificate proxies for authentication and authorization purposes, a new

method of authentication is now provided in EW. Users are no longer required to generate a

proxy on their own, manually or using specific tools. Instead, the EW login form can accept a

grid certificate and the corresponding certificate key, and generate a certificate proxy on the

fly within web browser using a dedicated built-in applet. In this way, users’ sensitive personal

credentials are not sent outside their computers: the proxy is generated within the web

browser and subsequently used by EW for authentication and authorization.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 49 of 57

Use of multiple executors in a single experiment run. EW supports concurrent sessions

with more than one executor. This means that users can log into multiple executors, manage

files from different sites and run experiments that combines many executors.

Data flow between executors. As a consequence of using different executors within the

experiment run, mechanisms for staging input and output files between executors have been

implemented.

Support for long-lasting connections with executors. Support for long-running

experiments requires long-lasting connections with executors that rely on connection-

oriented protocols (e.g. SSH, GridFTP). For this purpose the GridSpace Execution Engine

periodically triggers dedicated “keepalive” calls against all connected executors. Depending

on the specific implementation of an executor, the keepalive call may be implemented in

various, executor-specific ways. This call must be handled by the executor in order to avoid

session expiration and to check connectivity with external systems the executor relies on, if

any.

Isolated executor client modules. Since GridSpace is meant to support an unrestricted

range of executors, mismatches and software conflicts between executor client modules are

expected to occur and have indeed occurred. AHE and QCG client modules proved

incompatible with each other; however this was remedied by introducing isolation between

executor client modules enabled by the Java class loader mechanism. Executors share only

the minimum amount of classes that are loaded by EE, while the rest is loaded by the

executors independently, using isolated and separated class loaders. That avoids name

conflicts of in Java classes induced by version conflicts of modules that multiple executors

depend on. Such low-level isolation creates a robust foundation which strengthens the

extendability of GridSpace in terms of the number of executors that can coexist in a single

GridSpace instance.

Compound assets. Some multiscale application modules require entire input directories

(rather than single files). Therefore, GridSpace experiments had to support directories as

their input/output assets. As a result, application developers can now specify a path to an

input/output directory using a terminating slash character. GridSpace treats with such

input/output definitions as describing a directory. Moreover, a given directory can be

specified as a compound set consisting of individual input/output files. Copying single files to

and from compound assets is handled transparently by GridSpace.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 50 of 57

Interpreter Registry. GridSpace configuration includes a file that lists available interpreters

and their installations on executors. This file is XML-formatted and made available remotely

via a RESTful API (used e.g. by the Multiscale Application Designer).

Parameterized interpreter arguments. Following the first prototype release it was

discovered that when using scientific software packages (configured as interpreters in

GridSpace) on different computing sites (configured as executors in GridSpace) some

interpreter- or executor-specific parameters have to be set when submitting computations.

For example, a queue name in the PBS job submission system is an executor-specific

parameter, specific to a given computing site. The configuration file for a given scientific

software package is an interpreter-specific parameter that needs to be provided on whatever

site such software is to be run. For this purpose, GridSpace allows the user to specify a

program invocation command that contains interpreter- and executor-specific parameters to

be provided in the experiment and experiment execution descriptor respectively.

Experiment variable management. As GridSpace experiments are fully portable and

execution environment-agnostic, they need to be supplemented with additional information

about where and with what execution environment-related parameters they are to be run.

This information is referred to as experiment variables. They can be easily added to the

experiment, saved as a file (outside of the experiment file), or fetched from a file. This allows

for persisting and managing multiple run configurations for experiments.

Support for subsnippets. In order to enable complex control flow in experiments,

GridSpace introduces the subsnippet mechanism. It enables nesting code snippets – the

nesting snippet can initiate execution of the nested snippet anywhere in its own code. This

paves the way towards execution of nested snippets in loops and conditional statements for

nesting snippet, which, in turn, facilitates experiments that follow popular application patterns

such as parameter sweep.

GridSpace execution engine exposes an HTTP RESTful API for execution of subsnippets

that is callable from within snippet processes on target executors. Calls to this API are

performed using the snippet’s interpreter language. However, in order to release experiment

authors from dealing directly with REST requests these invocations are generated

automatically using configurable code templates for specific interpreters. Such templates are

included in the Interpreter Registry.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 51 of 57

GridSpace Directory Library. GridSpace EW configuration management relies on the

GridSpace Directory library that enables reading, storing and changing configuration files

during runtime. Based on the Apache Virtual File System project, it can handle various types

of remote storage so that GridSpace configuration can be stored in a remote location, or

even shared by multiple instances of GridSpace. It also ensures that changes in

configuration files are applied immediately.

12.4 MAPPER Memory

The following sections describe two parts of MAPPER Memory: Registry of Module Metadata

and xMML repository.

12.5 Registry of Module Metadata

The primary purpose of the module metadata registry is to persistently store and publish

descriptions of scale models, mappers and filters developed for MAPPER applications. In

order to deliver such functionality, MaMe employs a three-layer architecture, with a persistent

database, a semantic domain model and external user/API interfaces (see Section 8.2.2.3 in

D8.1). It supports several modes of interaction:

Browsing registered elements. The user is able to see all the registered scale models,

mappers and filters as the basic building blocks for any MAPPER multiscale application (Fig.

16). The defined ports and implementations of the elements are also stored in MaMe, yet

due to the growth in the number of stored models and mappers, the element list was made

more concise. The main view only presents the most crucial information to the user, allowing

him or her to click for further details, as needed (see Fig. 17).

Fig. 16 A single-scale model presented by the MaMe Model Registry. Only the most general metadata is

displayed when browsing the list of available models, mappers and filters. Any additional information and

dialog boxes (ports, implementations) are loaded on demand with asynchronous AJAX calls.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 52 of 57

Fig. 17 Any element of a MAPPER application, be it a scale model, a mapper or a filter, may have its

implementations registered in MaMe. In this way other MAPPER components (MAD, GS etc.) are able to

learn how to execute a given computation. Moreover, scale models and mappers may have ports, which

play a crucial part in xMML notation and which provide the means for putting together complex

applications into a single workflow processing.

Registering new elements. MaMe provides a set of web forms to define new elements of

multiscale applications – scale models, filters and mappers – along with their attributes and

subelements (e.g. ports or scales).

Updating existing elements. Users are able to delete any element definition (or part thereof)

and they are able to alter the description (metadata) of such elements. Fig. 18 and Fig. 19

present two examples of web forms provided for easy and effective management of

registered metadata.

Fig. 18 A simple MaMe web form for altering application element description by adding a new port; the

administrator or the developer is able to add and remove any part of module metadata. In addition, any

element can be modified in-situ.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 53 of 57

Fig. 19 As the codebase of MAPPER applications grows, the administrator may use MaMe forms such as

this one to add new implementations of registered application modules.

Apart from its persistence capabilities and its user-oriented web interface for metadata

browsing and management, MaMe also provides an API for other MAPPER tools to connect

with the registry and publish or retrieve stored information. Currently, the MaMe API provides

the remote operations, based on the REST principles, as shown in Tab. 10

Tab. 10 MaMe API interface for other MAPPER tools to connect with the registry and to publish or

retrieve stored information.

/models-list lists all the registered models, mappers and filters with their full
descriptions

/add_base/Submodel registers a new scale model

/add_base/Mapper registers a new mapper

/add_base/Filter registers a new filter

/add_implementation/(Mapp
er|Submodel|Filter)/'id'/

adds an implementation of a given type of element (either scale
model, mapper of filter)

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 54 of 57

Fig. 20 All REST operations, that MaMe exposes as its API for other MAPPER tools in use for

interactions, are described online. Users can click the API Help button in the MaMe main menu to view

documentation on each API operation, similar to the one in the picture.

The API is documented online so each MAPPER developer has access to it at anytime (see

Fig. 20 for a sample API method description in MaMe). This API is actively used by MAD.

Since the API is both public and open, there are no obstacles to adding further tools which

interface with MaMe’s xMML metadata.

12.6 Repository of xMML Descriptions

The second component of MaMe is a repository of xMML application (or experiment)

descriptions. Its main objective is to provide MAPPER MAD users with a persistent and

shareable storage for multiscale application descriptions in the form of an xMML schema.

As presented in Fig. 21, the Experiment Repository holds descriptions of multiscale

applications. These descriptions may be written by users by hand, but the preferred (and

arguably better) method of planning applications is to use the MAD tool to design a new

multiscale application in a user-friendly way. MAD is able to load stored xMML descriptions

and save new ones in the repository.

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 55 of 57

Fig. 21 Main view of the Experiment (xMML) Repository part of MaMe, showing the list of recorded

experiment (application) descriptions, each represented by an xMML document in the specific version of

this notation, along with a list of application elements and their interconnections.

In order to provide a method for removing unnecessary, older versions of experiments, an

experiment archive has been implemented – removing any xMML experiment description

from MaMe will move it to the archive (instead of deleting it completely). Such archived

experiments do not clutter MaMe and MAD displays but are easy to retrieve with the use of

the Reload from Archive capability of MaMe.

In order to accommodate MAD and similar tools using MaMe internally, a HTTP/REST

interface was developed for the xMML Repository. Currently it provides three operations

listed in Tab. 11.

Tab. 11 HTTP/Rest interface of the xMML repository

/experiments_list returns the full list of available (i.e., not archived) experiments
and their metadata, in JSON format

/experiment_content returns the full xMML document for a specific experiment
saved in MaMe

/save_experiment saves a given experiment if no such experiment yet exists, or
updates its content if it has been already been recorded by
MaMe

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 56 of 57

The user is also able to upload his/her description written manually in the xMML XML

notation. If the parsing process is successful and the description conforms to the latest xMML

schema definition, MaMe will extract all the model, mapper and filter information from the

document and register them, rendering them available for browsing and updating in the

MaMe user interface, and for building new application descriptions in MAD.

12.7 Provenance System

The provenance system uses an RDF database to collect following events:

 experiment has started – contains date, experiment name and metadata;

 snippet execution has started – contains date, experiment for which this snippet is

run, snippet input (snapshots are created) and snippet code;

 snippet execution has been canceled – same as above, but creates snapshots of

snippet output instead of input. Additionally, the output is linked with the snippet that

produced it;

 experiment execution has finished – contains date and reference to the same

experiment metadata as the experiment start event.

The ontology used for describing provenance is based on the Open Provenance Model

Vocabulary (OPMV - http://open-biomed.sourceforge.net/opmv/ns.html). Key elements are

shown in Fig. 22.

Fig. 22 The ontology used by the MAPPER provenance system

MAPPER – 261507

D8.4-final_validation-CYF-v1.4 Page 57 of 57

The system uses a 4store RDF database for keeping provenance metadata and an SVN

repository for versioning input and output files of experiment steps (snapshots). Additionally,

creating script snapshot is supported. During the final reporting period the provenance data

model was validated and extended with interpreter artifacts which enable easier experiment

tracking.

