
 MAPPER - 261507 - FP7/2007-2013

Project acronym: MAPPER

Project full title: Multiscale Applications on European e-Infrastructures.

Grant agreement no.: 261507

D8.1 Description of the Architecture and

Interfaces

Due-Date: M6

Delivery: M6

Lead Partner: Cyfronet

Dissemination Level: Public

Status: Final

Approved: Quality Board, Project

Steering Group

Version: 2.13

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 2 of 71

DOCUMENT INFO

Data and version number Author Comments

16.02.2011 v 0.1 Katarzyna Rycerz Plan of the document

21.02.2011 v 0.2 Tomasz Gubala Initial content for sections
on result browsing, SSM
repository, module registry
and result management

22.02.2011 v 0.3 Tomasz Gubala Started the bibliography
section

22.02.2011 v 0.4 Katarzyna Rycerz draft of general architecture
section, update on modules
metadata stored in the
registry

22.02.2011 v 0.5 Joris Borgdorff Initial information about
xMML tool

23.02.2011 v 0.6 Tomasz Piontek Transformaing xMML to
QCG JobProfile

23.02.2011 v 0.7 Katarzyna Rycerz update on general
architecture section

24.02.2011 v 0.8 Tomasz Piontek QCG Client

24.02.2011 v 0.9 Mariusz Mormonski update on infrastructure
metadata stored in the
modules registry

28.02.2011 v 1.0 Stefan Zasada AHE Client

28.02.2011 v 1.1 Eryk Ciepiela Introduction to GridSpace
Experiment Workbench

07.03.2011 v 1.2 Katarzyna Rycerz Draft of requirements
section

08.03.2011 v 1.3 Alexandru Mizeranschi SBML Toolbox - Copasi

9.03.2011 v 1.4 Daniel Harezlak Multiscale Application
Designer - chapter draft

09.03.2011 v1.5 Grzegorz Dyk Provenance - chapter draft

10.03.2011 v1.6 Katarzyna Rycerz Improvements on
requirements section

10.03.2011 v1.7 Joris Borgdorff Added an MML section

14.03.2011 v1.8 Tomasz Gubala Small changes in XMML
repository section

14.03.2011 v1.9 Katarzyna Rycerz Multiscale Application
Skeleton Section

14.03.2011 v2.0 Eryk Ciepiela Experiment Workbench
section improvements

15.03.2011 v2.1 Eryk Ciepiela Experiment Workbench and
Experiment Execution
Engine sections
improvements

15.03.2011 v2.2 Daniel Harężlak MAD section improvements

15.03.2011 v 2.3 Katarzyna Rycerz Summary and Conclusions

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 3 of 71

sections, small MML section
improvements

15.03.2011 v 2.4 Katarzyna Rycerz Formatting

16.03.2011 v 2.5 Katarzyna Rycerz, Eryk
Ciepiela, Grzegorz Dyk

Minor changes, formatting

17.03.2011 v 2.6 Eryk Ciepiela Execution engine section
improvements

17.03.2011 v 2.7 Grzegorz Dyk Provenance section
improvements

17.03.2011 v 2.8 Marian Bubak, Katarzyna
Rycerz

Corrections of the overall
structure

17.03.2011 v2.9 Jan Meizner, Piotr
Nowakowski,Marek
Kasztelnik, Włodzimierz
Funika

Proofread

18.03.2011 v2.10 Marian Bubak, Włodzimierz
Funika, Katarzyna Rycerz

Minor corrections

30.03.2011 v 2.11 Katarzyna Rycerz Minor changes of document
structure

05.04.2011 v 2.12 Bastien Chopard,
Katarzyna Rycerz

General review of the
document

06.04.2011 v 2.13 Werner Dubitzky,
Katarzyna Rycerz

General review of the
document

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 4 of 71

TABLE OF CONTENTS

1 Executive summary ... 7

2 Contributors ... 8

3 Glossary of terms... 9

4 Characteristic and requirements of multiscale applications ...13

4.1 Characteristic of multiscale applications ..13

4.2 Multiscale Modeling Language ..15

4.2.1 Submodel execution loop ..16

4.2.2 Graphical representation (gMML) ..16

4.2.3 Textual representation (xMML) ..18

5 Architecture of multiscale programming and execution tools layer19

5.1 Introduction ...19

5.2 Architecture of multiscale programming and execution tools19

5.3 Current usage scenarios of programming and execution tools22

5.3.1 Tightly coupled applications ..22

5.3.2 Loosely coupled applications ...24

6 Multiscale application skeleton..27

6.1 Motivation ...27

6.2 Background ...27

6.3 Functionality ..28

6.4 Example of multiscale application skeleton ...28

7 Conclusions ..30

8 Annex 1. Detailed design ..31

8.1 User Interfaces and visual tools ..31

8.1.1 Multiscale Application Designer (MAD)..31

8.1.2 GridSpace Experiment Workbench ...36

8.2 Programming Tools ...40

8.2.1 XMML Repository ..40

8.2.2 Registry for Application Modules ...44

8.2.3 SBML toolbox ..47

8.3 Execution tools..49

8.3.1 GridSpace Experiment Execution Engine ..49

8.3.2 Result Management ..53

8.4 Provenance ...54

8.4.1 Use cases ...54

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 5 of 71

8.4.2 Design ...56

8.4.3 Data definition ...57

8.4.4 Provenance data acquisition ...58

8.4.5 Data sharing and querying ..58

9 Annex 2. MAPPER Application Technical Inquiry ...60

9.1 Goal ..60

9.2 Instructions ...60

9.3 Questions ..60

10 Annex 3. The AHE client usage ..63

11 Annex 4: QCG client usage ..65

12 References ...69

LIST OF TABLES AND FIGURES

Tab. 1 Summary of requirements and their proposed support in the WP8 architecture.21

Tab. 2 Summary of multiscale applications requirements and proposed solutions.30

Fig. 1. Example of submodel execution loop with various operators.16

Fig. 2: An example of the In-stent restenosis 3D model. ...17

Fig. 3. Operators in the graphical representation of Multiscale Modelling Language.17

Fig. 4. Architecture of the multiscale programming and execution tools.20

Fig. 5. Multiscale tools for tightly coupled execution scenario. ..23

Fig. 6. Multiscale tools for loosely coupled execution scenario. ..25

Fig. 7. The Structure of In-stent Restenosis Application (2D version).29

Fig. 8. Application skeleton example based on In-stent Restenosis 2D structure.29

Fig. 9. Multiscale Application Designer use case diagram. ...32

Fig. 10. Design of Multiscale Application Designer. ..33

Fig. 11. Multiscale Modeling Language, its representations (xMML, gMML) and relation to

GridSpace Experiment. ...34

Fig. 12. xMML to QocCosGrid Job Profile conversion - use case. ..36

Fig. 13. xMML to QosCosGrid Job Profile Translation Module - components and design.36

Fig. 14. Generating GridSpaceExperiment from gMML diagram. ..38

Fig. 15. Sample of remote directory contents after successful login to an execution machine.

 ...39

Fig. 16. Multiscale application designers will be able to store and manage XMML descriptions

inside the repository. ...41

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 6 of 71

Fig. 17. Proper handling of XMML description files requires appropriate file storage as well as

a means of capturing and persisting the accompanying metadata (author, version, date

etc.). ...42

Fig. 18. The Persistence Abstraction Layer provides generic file and metadata storage

features as well as customization via the domain model. ..43

Fig. 19. The registry of application modules serves both design and execution of multiscale

applications...44

Fig. 20. Preliminary scenario of aggregating various information and monitoring services

used in different e-infrastructures. ...46

Fig. 21. The module registry re-applies the persistence abstraction layer with a different

domain model to store simulation model metadata. ..47

Fig. 22. Functionality of GridSpace Execution Engine. ...49

Fig. 23. The functionality of the MAPPER result management component from the point of

view of a person running an instance of a MAPPER application.53

Fig. 24. The result management in MAPPER is delivered both through the direct access to

user's files on a target machine and through a dedicated result location registry (for

other means of result persistence, like dedicated storage facilities).54

Fig. 26. The design of Provenance system. ..56

Fig. 23. Use cases for Provenance collector. ..55

../../../Documents%20and%20Settings/kzajac/Moje%20dokumenty/alfons/D8.1/d8.1-architectureinterfaces-cyf-v2.12.doc#_Toc289837954

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 7 of 71

1 Executive summary

The aim of this deliverable is to provide specification of the architecture and interfaces of

multiscale programming and execution tools layer. This deliverable describes design of an

environment for composing multiscale simulations from single scale models encapsulated as

scientific software components and distributed in the various European e-Infrastructures

supporting the two main paradigms of multiscale computing: loosely coupled and tightly

coupled. According to the MAPPER description of work the aim of the proposed environment

is to:

 support composition of multiscale applications by using visual and programming tools

to build multi-disciplinary and multi-scale “in silico” experiments,

 support execution of such experiments and achieve their reusability,

 integrate solutions designed for multiscale simulations’ development (such as

MUSCLE communication library) with possibilities given by environments for

application composition and European e-Infrastructures,

 allow interaction between software components from different e-Infrastructures in a

hybrid way.

The document is organized as follows: Section 3 contains glossary of terms used in this

document, In Section 4 we have described application characteristic and requirements. This

Section also covers the idea of standard language for describing multiscale applications

structure - Multiscale Modelling Language. The general architecture of the tools and a typical

use case is described in Section 5. The tools are divided into the following groups: user

interfaces and visual tools, programming, execution and provenance. In Section 6 we

describe the motivation and idea of multiscale application skeleton framework. We

summarize in Section 7. Detailed design of the tools can be found in Annex 1 (Section 8).

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 8 of 71

2 Contributors

Below we list the institutions and names of the contributors. Their exact role in this

deliverable is depicted in the document info table at the beginning of the document.

Cyfronet: M. Bubak, E. Ciepiela , G. Dyk, T. Gubała, D. Hareżlak, J.Meizner, P.Nowakowski,

K. Rycerz

PSNC: M. Mamoński ,T. Piontek

UvA: Joris Borgdorff

UNIGE: Bastien Chopard, Jean Luc-Falcone

UU: Alexandru Mizeranschi

UCL: Stefan Zasada

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 9 of 71

3 Glossary of terms

The terminology used in this document is listed below. It should be noted that the

terminology will evolve during the project.

Application Hosting Environment (AHE): a framework supporting running applications on

Grid infrastructures hosting Globus, UNICORE or GridSAM middleware.

Conduit: see MUSCLE

Coupling: interaction between two single scale models, could be uni-directional or bi or

more directional (for coupling implementation see also: modules and MUSCLE)

Coupling template: a specific coupling from the SEL-operator of one submodel to the

operator of another.

Coupling topology: a graph representation of a multiscale model, having coupling

templates as its edges and instances of submodels as its nodes.

CxA: Ruby-based file format that describes a MUSCLE application: (1) modules parameters

(2) couplings between modules. See: MUSCLE

Experiment host: host where GridSpace experiment is executed

gMML: see MML

Grid Resource Management System (GRMS): part of QCG middleware responsible for

managing resources.

GridSpace (GS): GridSpace Experiment Workbench and Execution Engine.

GridSpace Experiment Workbench (GS Experiment Workbench or EW): GridSpace

frontend - the web portal facility intended to be the interface for the end-users to perform

activities related to composition and running multiscale applications.

GridSpace Experiment Execution Engine (GS E3): backend of GridSpace Experiment

Workbench (EW) that takes responsibility for coordination of a GS experiment run

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 10 of 71

GridSpace experiment: set of snippets in various script languages stored in XML file. This

XML file can be stored in Repository.

Job Profile: see QCG Job Profile

Loosely coupled and tightly coupled: a collection of submodels instances is loosely

coupled if there is no cycle between them in the coupling topology, and tightly coupled

otherwise.

Mapper: type of scaleless module. See: module, MUSCLE. Note: this is not MAPPER

project.

Metadata: data about data (e.g. link to actual file, but not file itself)

Module: an independent software module implementing certain functionality. For MAPPER

purposes we distinguish two kinds of software modules:

 scaleful software modules implementing single scale models (e.g. MUSCLE

kernels),

 scaleless software modules used to convert data from one scaleful module to

another. The examples are: MUSCLE conduits (unidirectional) or MUSCLE

kernels called mappers (bi- or more- directional). See also: MUSCLE.

Multiscale process: a natural process that acts on multiple scales at once. For example, a

reaction-diffusion system has diffusion taking place on a temporal and spatial meso-scale

and reactions taking place on a temporal and spatial micro-scale. The reaction-diffusion

process is thus described as a multiscale process.

Multiscale model: the model of a multiscale process.

Multiscale Modeling Language (MML): the high level concept of the language that

describes single scale submodels and their complicated connections (the coupling topology

of a multiscale model). It is a concept for modelers and has several representations. The one

described in this document are xMML and gMML:

 xMML: the XML representation of MML that contains all information about

application structure.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 11 of 71

 gMML - the graphical representation of MML that contains only part of

information about application structure, useful for modelers and application

developers.

Multiscale Coupling Library and Environment (MUSCLE): a communication library that

can be used to connect modules implementing single scale models (called kernels) into a

multiscale simulation. Kernels can be joined by means of unidirectional converters (called

conduits). Some kernels can also be implemented as scaleless bi- or more- directional

modules (called mappers). The structure of the MUSCLE application is described in CxA file.

Number of submodel instances: the number of instances a submodel may have within the

multiscale model

Services: making the software fit for use.

Single scale process or subprocess: a natural process that acts only on a single scale. To

be more precise, its scale ranges from the finest sizes it considers up to the total size of the

process. In the context of a multiscale process, a single scale process can be called a

subprocess.

Single scale model or submodel: a model of a single scale process. In the context of a

multiscale model, a submodel.

Scale Separation Map (SSM) : a graphical scale separation map aids visual inspection of

scales used and the separation between them in a multiscale model. SSM is meant for

modelers that should be able to present a model to their judgment in a way that serve the

visual goal. SSM is not meant for computational (execution) purposes.

Snippet: a piece of code in a script language.

Submodel Execution Loop (SEL): pseudocode of a single scale model, defining the

operators used and the order in which they are used.

Submodel instance: an instance of a submodel within the coupling topology. Multiple

instances could be created of the same submodel.

Synchronization points: points during execution that one submodel instance will need to

synchronize with another (including itself), by requiring input.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 12 of 71

System Biology Markup Language (SBML): XML-based language for representing

models. It's oriented towards describing systems where biological entities are involved in,

and modified by, processes that occur over time.

QosCosGrid (QCG): a resource and task management system aiming to provide

supercomputer-like performance and structure to cross-cluster large-scale computations that

need guaranteed level of Quality of Service (QoS).

QCG JobProfile: XML-based language describing how to execute an application using QCG

middleware.

Provenance: metadata about experiment creation, usage and results.

Repository: place where multiscale applications' description files are stored and managed

(e.g. xMML files)

Registry: place where information (metadata) about some entities (in our case simulation

modules) are registered (but modules themselves are not stored!).

Task graph: an acyclic directed graph representation of the submodel instances and their

synchronization points as they unfold over time. It may include each of the operators of the

SEL as nodes.

User Interface machine (UI): machine accessible directly (via ssh) by a user from which he

can access other (Grid, PBS) resources.

xMML: see MML.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 13 of 71

4 Characteristic and requirements of multiscale
applications

4.1 Characteristic of multiscale applications
Multiscale applications implement models of multiscale processes [HOEKSTRA10,

ENGQUIST]. We focus on such multiscale applications that can be described as a set of

connected single scale modules i.e. modules that implement models of single scale

processes. Moreover, one application run can consists of many instances of the same single

scale module. In modeling, a multiscale application can be represented in a form of coupling

topology - a graph having instances of single scale models as its nodes.

Usually building multiscale application is not trivial and requires a lot of effort from the

application designer. There are many solutions to combine single scale codes together, e.g.

the Model Coupling Toolkit [MCT] – a toolkit supporting solving parallel coupled models, HLA

components approach [RYCERZ10] that joins services provided by HLA standard [HLA] with

component technology, Python based approached such as AMUSE [MUSE], or MUSCLE

library [MUSCLE] that wraps single scale models as Java agents and uses an agent

framework to execute the coupled simulations.

Although these environments are capable to support parallel or distributed multiscale

simulations, they are usually used by individual users on local clusters to solve specific

multiscale problems. Due to the fact that they are not deployed on any of existing e

infrastructures, they are not widely used by a multiscale simulations community and do not

fully support development of general solutions and standards in that field. The goal of WP8 is

to build tools that support programming and execution of such applications using

technological possibilities given by available e-infrastructures. In this document we focus on

the requirements for such tools.

Below we present characteristic of multiscale applications based on the information gathered

by means of inquiry attached in Annex (Section 9) as well as the review described in D 4.1.

The detailed information about applications can be found in D 4.1. The exact filled inquiries

can be found on the MAPPER project wiki (http://www.mapper-project.eu/web/guest/wiki)

and contain questions about application structure, implementation details and their

developer’s expectations.

A typical multiscale application consists of:

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 14 of 71

 software modules simulating certain phenomena in certain time or space scale

(scaleful); usually this modules are computationally intensive, could require HPC

resources, often (but not always) are implemented as parallel programs,

 software modules that convert data from one scaleful module to another; usually

these modules do not have demanding computational requirements; however, to

avoid additional communication, they often required to be executed "close" to the

scaleful modules they are connecting; they can even be implemented in the same

process as one of the scaleful modules.

The communication structure of the multiscale application varies significantly. So far, we

have identified following schemas:

 master-worker paradigm e.g. macro scale module (master) triggers micro scale

simulation of a part of its domain that requires more detailed attention; these types of

applications are also supported by Heterogeneous Multiscale Methods [ENGQUIST];

we can find examples outside of MAPPER - e.g. a suspension flow application

described in [LORENZ]; this type usually requires dynamic trigger of modules

execution, usually number of modules instances is dynamic,

 peer to peer type of computation where all modules are executed concurrently and

exchange data in usually asynchronous fashion; example is part of MAPPER In-stent

Restenosis application [CAIAZZO], Canals [THANG] and Fusion [COSTER]

applications; during the course of execution, applications often pass many

synchronization points (the number can be static or dynamic); therefore, this type often

requires mechanism of efficient communication,

 pipe - modules execute one after another; example is MAPPER Nano Polymer

application [SUTER],

 hybrid - the combination of two or more possibilities mentioned above; example is

Instent Re-stenosis Application (ISR): Initial Condition module is connected to the rest

of the simulation in "pipe", and then the rest of the simulation consists of modules that

run concurrently.

Regarding type of modules execution one can distinguish between:

 stateless modules - after they finish, they return result (in a form of returned state

parameter or snapshot file) and do not preserve any data from their computation;

example is LAMMPS module from Nano Polymer simulation,

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 15 of 71

 stateful modules - after (often partial) computation they remember the state of it; often

remembering the state from previous calculation can fasten next one; examples are

modules of ISR or Fusion applications.

Regarding characteristic mentioned above, multiscale application can be also classified

as loosely or tightly coupled. In loosely coupled simulation there is no loop in coupling

topology (this could be a pipe or direct acyclic graph scheme) and the modules are stateless.

In tightly coupled simulation, there is a loop in coupling topology and the modules are

stateful.

Besides of the requirements coming from application structure, there are additional ones:

 some of the applications need to switch between different versions of the modules

with the same functionality (e.g. Fusion application),

 some of the modules can be interactive (i.e. can require user input during

application execution - e.g. Nano polymer simulation),

 modules of the same application often need access to different resources from

HPC to Grid type.

4.2 Multiscale Modeling Language
The requirement of making the modeling and design of multiscale applications easier was

the main motivation for an elaboration of a language that uniformly describes multiscale

models and their computational implementation on abstract level. Within the MAPPER

project we plan to extend the idea of Multiscale Modeling Language (MML) [FALCONE,

HOEKSTRA10] which can be tuned and expanded given the example applications of the

project participants.

Two representations have been selected for a multiscale modeling language: a graphical one

simply denoted by gMML, and a textual one, using XML, called xMML. gMML can capture a

large part of the model description; however, for a complete and exact description xMML is

also necessary.

Both gMML and xMML have their roots in the Complex Automata formalism

[HOEKSTRA10,HOEKSTRA07] which describe multiscale coupled cellular automata.

Notably, from this formalism the submodel execution loop (SEL) is re-used.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 16 of 71

4.2.1 Submodel execution loop

The submodel execution loop (SEL) regulates and unifies the execution flow within
submodels. It is formed from the basis that all submodels will have an initialization, possibly
multiple iterations of solving and finalization. Moreover, during each of these phases we can
define whether the submodels may send or receive data from other submodels.

Fig. 1 shows the example pseudo code of the SEL.

f := finit

t := 0

while not EC(f, t):

 Oi(f, t)

 f := S(f, t)

 f := B(f, t)

 t += theta(f)

end

Of(f, t)

Fig. 1. Example of submodel execution loop with various operators.

The operators shown in

Fig. 1 are: finit, Oi, B, S, and Of for initialization, intermediate observation, boundary

condition calculation, solving step, and final observation respectively. Operators finit, B, and

S are allowed to receive data and Oi and Of to send data. EC is the end condition for the

submodel and theta is the possibly variable time step. Coupling templates are defined as

couplings between the operator of one submodel to the operator of another.

4.2.2 Graphical representation (gMML)

In the graphical representation MML, UML-like icons are used to show different couplings.

Fig. 2 shows an example of the In-stent restenosis 3D model.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 17 of 71

Fig. 2: An example of the In-stent restenosis 3D model.

First of all, a submodel instance is shown as a rectangular box with its name inside. If there

are multiple instances of the same submodel each instance should have its own unique

name and have a suffix between angled brackets of the submodel name, like so:

instanceName<SUBMODEL>.

A coupling between two submodels is shown as an connector with a tail and head styled

differently given the operators of the coupling template. See

Fig. 3 for which operators correspond to which tail or head icon.

Fig. 3. Operators in the graphical representation of Multiscale Modelling Language.

A label can be added to a connector to show what data is transferred in this coupling.

Originally the coupling had to be placed on a certain side of the submodel [FALCONE]. Due

to difficulty in reading, this constraint has been lifted.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 18 of 71

4.2.3 Textual representation (xMML)

xMML, the textual representation of MML, is based on XML format. xMML is described on

the MAPPER wiki page (http://www.mapper-project.eu/web/guest/wiki) in more detail. XML

was chosen as a well-known, human-writable, machine-readable standard that promotes

interoperability.

In this version, xMML contains a model version and description. Each of the datatypes,

converters and submodels used in that model are defined. The submodel definition consists

of a description, its scales, ports and implementation details. The scales are specified per

dimension and give an indication of the scale separation involved. The ports are sending or

receiving and coupled to a specific SEL operator, and send a specific datatype.

Implementation details may give a scheduler hints at where to schedule different submodels.

When the submodels are defined, the coupling topology may be created, defining first

submodel instances and then couplings between those instances. Submodel instances may

override the scales that were given during submodel definition. Couplings are defined with

the sending port of one submodel and the receiving port of the other. As the datatypes sent

over the couplings have a defined size, a communication cost can be estimated for each of

the couplings.

The xMML format thus specifies the entire multiscale model and contains almost all

information necessary to run a multiscale model.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 19 of 71

5 Architecture of multiscale programming and execution
tools layer

5.1 Introduction

This section discusses the overall multiscale programming and execution tools architecture

and explaines how the visual, programming and execution tools interact with each other

when supporting the user with creation and execution of multiscale applications. The typical

use case scenario is also included.

The tools are developed in WP8 that is a part of Joint Research Activities in the MAPPER
project. However, the actions taken in this workpackage have to be synchronised with the
service activities WPs (WP4, WP5 and WP6). In particular, some of the tools developed in
WP8 are extension to the already existing tools beeing adapted in WP4, integrated in WP5
and operated by WP6. Therefore the rest of this Section is divided into two parts. Section
5.2 presents a planned architecture of the tools that it is going to be achieved in the end of
the project. It is quite obvious that a detailed design diagram such as the one presented in

Fig. 4 will evolve throughout the lifetime of the project and should be considered as a plan.

Section 5.3 contains a snapshot of the current state of development of the tools that are

being already adapted and integrated in Services WPs and are to be extended in this WP.

5.2 Architecture of multiscale programming and execution tools
The tools can be divided into following groups: user interfaces and visual tools,

programming, execution and provenance:

 User interfaces and visual tools are developed in task 8.1. This group includes a tool

for creating MML in a visual form as well as the GridSpace Experiment Workbench

with the File Browser.

 The programming tools (developed in task 8.2) include the repository of XMML files

for further reuse and the registry describing information about existing application

modules. This group also includes the toolbox supporting generation of System

Biology Markup Language (SBML) model representation.

 The execution tools (developed in Task 8.3) include the high level execution engine

that orchestrates overall application execution and connects to the interoperability

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 20 of 71

layer by the Application Hosting Environment (AHE) and the QosCosGrid (QCG)

client. This group contains also the result management facility.

 The provenance tool developed in Task 8.4 supports tracking of application

execution.

User Interfaces and visual tools, task 8.1

Result Management 8.3
For metadata storage and
location browsing of final
and intermediate results

stored in the
infrastructure.

Software packages needed by applications
created in WP7, adapted by WP4, integrated by WP5 and installed by WP6

on e-infrastructures

Multiscale Application Designer GridSpace Experiment
Workbench

Dedicated Simulation UI (if needed)

Execution Engine
Task 8.3

Provenance
8.4

Result and file browsing

XMML
Repository

Task 8.2

Registry of modules
metadata
Task 8.2

•Interfaces
•Semantic description
(if needed)
•Location of
implementations

Direct Experiment hosts
(UIs)

Interoperability Layer WP4 (QCG-broker, AHE)

Fig. 4. Architecture of the multiscale programming and execution tools.

The typical scenario of the tools usage is:

1. A user creates MML (in a graphical or textual form) using Multiscale Application

Designer tool,

2. The info about possible modules are taken from the Modules Registry,

3. The textual representation of MML (xMML) can be stored in the xMML Repository and

reused from there,

4. The xMML is transformed into a set of execution instructions for execution engine (like

GridSpace experiment or QCG Job Profile),

5. The simulation is executed on the e-infrastructure using appropriate interoperability

layer (e.g. QCG, AHE or direct connection to User Interface machine available on the

e-infrastructure). If the application is interactive (requires manual changes during the

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 21 of 71

execution), the flow goes back to the GridSpace Workbench that allows interactive

experimentation,

6. Results are managed by Results Management and can be viewed in GridSpace result

viewer,

7. The track of the execution is stored by Provenance Services.

The detailed design of the mentioned components can be found in Section 8 of this

document. Tab. 1 below matches requirements mentioned in Section 4 with the architecture

components.

facilitate designing multiscale

applications

common standard - Multiscale Modeling Language

(MML), tool supporting MML (MAD)

facilitate application development
interactive creation of experiments in GS Experiment

Workbench

efficient execution
usage of existing e-infrastructures via interoperability

layers (QCG, AHE)

interactive execution interactive experimentation in GS EW

models reusability store modules descriptions in a registry

applications descriptions' reusability store application descriptions in a repository

tracking application execution,

measuring tools efficiency
provenance system

Tab. 1 Summary of requirements and their proposed support in the WP8 architecture.

As stated above, the work described here is being done in cooperation with Services WPs. In

this document we show how the designed tools are going to extend or use the software tools

described in detail in D 4.1:

 GridSpace – the current version of this software is a general purpose tool for scientific

applications. In this document we propose the extensions suitable especially for

multiscale simulations. The detailed list of the new GridSpace fuctionality can be

found in Section 8.3.1.1. (for Experiment Workbench) and Section 8.3.1.1 (for

Execution Engine),

 MUSCLE communication library – in this document we describe how to use it from

designed tools,

 QCG – In this document we describe how to use it from designed tools,

 AHE – In this document we describe how to use it from designed tools

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 22 of 71

5.3 Current usage scenarios of programming and execution tools

In this Section we describe the current state of the architecture and connections between

existing software tools in the context of the whole project. In Section 5.3.1 we describe the

case of tightly coupled applications and In Section 5.3.2 the case of loosely coupled

applications.

5.3.1 Tightly coupled applications

The MAPPER tightly coupled applications are supported by MUSCLE environment as it is

designed with MML concept in mind. MUSCLE consists of:

 a communication library to connect tightly coupled simulation modules (MUSCLE

kerneles). The library allows to concurrently run all modules of the simulation that

communicate directly using message passing paradigm. MUSCLE API is specifically

designed for complex automata simulation model [HOEKSTRA10] and allows a user to

specify connection ports (called Exits and Entrances). The MUSCLE communication is

based on actor-based concurrency model i.e. asynchronous sending, synchronous

receiving. Exits and Entrances are connected using external CxA formal file (see

below),

 external configuration mechanims for specifying connections between modules (CxA

file) and their parameters.

The cooperation between the tools for tightly coupled (MUSCLE) application execution

scenario is shown in the Fig. 5. To execute the MUSCLE application, the GridSpace

Experiment Workbench connects to user interface (UI) machine that stores all information

and software necessary to run the application. This includes CxA description (a Ruby script

that configures the connections between single-scale modules and the parameters of the

whole application - connections can be viewed by the MUSCLE viewer) and the actual

application implementation files. Next, the GS connects to the resource management system

that could be either local and accessible from UI (e.g. PBS queue system) or grid (provided

by QCG interface) to start the MUSCLE application. Once the application is started, the

modules communicate using MUSCLE library. The MUSCLE application can benefit from

GridSpace by integrating in one environment all steps necessary to:

1. configure application using CxA format - currently the MUSCLE connection editor

and viewer is integrated into GridSpace environment. In the future the more

advance composition tool is planned to be build as a part of task 8.1,

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 23 of 71

2. run application on various type of e-infrastructures supported by GridSpace:

currently PBS cluster and QCG e-infrastructure. The details of low-level application

execution (e.g. lauching kernels on different machines) are hidden for the user,

who controls application structure in CxA file.

 Fig. 5. Multiscale tools for tightly coupled execution scenario.

5.3.1.1 MUSCLE from GridSpace perspective

Below we present some aspect of MUSCLE from GridSpace as a programming and

execution tool perspective.

 From a programming tool perspective, the idea of external configuration of modules

connections is very promising as it naturally leads to simulation composability that

MAPPER programming tools should support. Furthermore, as CxA file is a Ruby

script, it is directly supported by GridSpace (designed to build so-called experiments

from script snippets). Taking into account requirements of Multiscale Modelling

Language, the information stored in the current CxA format need to be further

extended. Additionally, running the application on any e-infrastructure should

require a mechanism that allows a user to specify his preferences about mapping

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 24 of 71

MUSCLE kernels to actual resources - e.g. a user may want some kernels to be run

on the same machines (see: ISR application).

 From an execution tool perspective, the actual execution of MUSCLE application

requires (1) symultanous run of the kernels on various resources, (2) availability of

direct communication between the kernels. On cluster architecture, this can be

achieved by access to PBS mechanisms (supported by GridSpace). On cross-

cluster architecture this can be achieved using various other mechanisms used in

MAPPER project proposed by QCG or HARC.

Drawbacks of MUSCLE from developers' perspective:

 MUSCLE environment consists of the library API and visualisation tool. The design of

the environment is not modular - it does not allow to easily separate the tool from the

library, therefore adaptation of the visualisation tool to the GridSpace required deep

level of understanding of MUSCLE implementation.

 installation of MUSCLE is not automatic, requires third-party libraries and installing

additional ruby gem, which makes it a bit tricky without administrative priviliegies

Drawbacks of MUSCLE from application designers’ perspective:

 MUSCLE does not allow to dynamically add kernels during runtime, which is useful

for e.g. master-worker type of applications or applications that need to run modules

in sequential order as a workflow (see e.g. "Initial Conditions" module of ISR

application)

 The actual converters (conduits) are unidirectional. If it is required to have bi- or

more- directional converters (like in ISR application), a normal MUSCLE kernels

have to be used (such kernels are called mappers). This approach may be

confusing as there is no mechanism to distinguish between kernels implementing

scaleful models and scaleless mappers.

5.3.2 Loosely coupled applications

The possible cooperation between the tools for loosely coupled applications is shown in the

Fig. 6. GridSpace Experiment Workbench connects directly to the machines where loosely

coupled modules can be launched either directly or by local management system (e.g. PBS).

A user can benefit from interactive exploratory programming feature of GridSpace that

enables the user to make a decission how to execute module B after seeing output of

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 25 of 71

module A. As for tightly coupled applications, GS can benefit from QCG or AHE solutions

(such as advanced reservation) to execute loosely coupled modules on the e-infrastructures.

Fig. 6. Multiscale tools for loosely coupled execution scenario.

The well defined example of a loosely-coupled application in MAPPER is the Nano Polymer

application that suits well the GridSpace operation model (see GridSpace description in D

4.1). First of all, the main model of the interaction with computational resources and data files

is through the SSH protocol, also vastly used in GS. Since the Experiment Workbench (the

main part of the GS tool) works entirely on the top of SSH it allows for easy switch from

current terminal-based mode of work to the browser based solution. The user is able to log

onto a computational resource (i.e. the user access node, precisely) perform the operations

required to run the simulations using the provided set of interpreters.

Moreover, GS may provide a rich set of interpreters to develop glue code with, what is

important for a user having to perform various analysis of the intermediate results between

subsequent steps of a multi-model simulation. The Perl interpreter is supported, as is the

bash shell to run the actual computations, but other interpreters like Ruby, Python or AWK

((depends on the availability of the packages on the target machine)) might also be provided

if needed. All of them may be used in combination in a single computational experiment (like

a workflow of tools in a pipeline). GS support running jobs through PBS natively through a

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 26 of 71

PBS gem - when compiled on the target machine it allows to submit computational runs

directly from script languages like Ruby, Perl or Python.

The features which are not present in GS at the moment yet are foreseen to be useful for this

application is the multi-machine login capability and the external SCP file transfer. The first

will allow to be simultaneously present on two different machines (required to perform the full

3-step nano computation for the polymer study) in a single Experiment Workbench window.

The other, when the multi-machine login is present, will allow transferring files between these

machines in a simple drag-and-drop manner. For the time being the users may still use two

different browser tabs to access different machines and the file copy mechanism may be

easily written in a simple shell script.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 27 of 71

6 Multiscale application skeleton

6.1 Motivation
Application analysis conducted during preparation of this deliverable have shown that

MAPPER applications vary significantly and it is difficult to identify a common pattern of

requirements, essential for tools design. In Section 3 we described the characteristics of

multiscale applications (types of modules, communication structures, etc.), as can be seen,

quite a wide spectrum of types is covered.

Moreover, real applications are quite difficult to test as their installation is time consuming - it

often requires third party libraries and special compilers (e.g. Fortran). The execution time is

also quite long (e.g. for In-stent Restenosis it was ca. three days). Therefore, we propose to

develop a Multiscale Application SKeleton framework (MASK). The framework will enable to

build easy to test prototypes of multiscale applications. In particular, groups of users will

benefit from MASK :

 application designers will be able to perform early tests of a chosen decoupling

technique modeled using XMML,

 tool developers will be able to identify common patterns of multiscale simulation

requirements,

 tool developers will be able to early test the programming and execution tools,

 services managers will be able to test the infrastructure.

6.2 Background
In general, algorithmic skeletons (called also Parallelism Patterns) are quite an old idea

[COLE]. A recent survey of algorithmic skeleton frameworks can be found in [GONZALES].

The most common patterns include master-worker, pipe, divide and conquer, map-reduce.

These patterns are general and can be applied to multiscale simulations. In the MAPPER

project we aim to investigate how to extend this idea to specifically support multiscale

simulations. When designing the framework we will have to define:

 a basic skeleton set based on the types of modules and communication patterns

described in Section 4,

 the skeleton’s capability of joining and nesting,

 the interface with which programmers code their skeleton applications either based on

XMML or scripting languages,

 the language in which the skeleton applications are compiled and run,

 a communication library (e.g. MUSCLE),

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 28 of 71

 the capability to access and manipulate input/output files.

6.3 Functionality
The aim of the MASK framework is to support the creation of “empty” multiscale applications

possessing the same structure as a real one: the same number and type of modules and the

same communication structures: master-worker, p2p, pipe or hybrid (the types of modules

and communication structures are described in Section 3 of the current Document). Also

MASK will support parametrizing such an “empty” application with:

 execution time,

 amount of exchanging data,

 execution mode – batch, interactive,

 topology (e.g. a converter should be close to its source or sink modules).

MASK will allow the user to fill the skeleton in a customized way: by adding a real code or

well known computational kernels (e.g. from benchmark suites) for comparison.

6.4 Example of multiscale application skeleton
To illustrate the idea of the application skeleton, we use an example the Instent Restenosis

Application (ISR) 2-D version. From the execution tools’ perspective ISR fits a tightly coupled

paradigm as its modules run concurrenly and communicate directly during runtime (a p2p

communication structure). The current implementation of ISR uses MUSCLE as a

communication library.

As shown in Fig. 7 the application consists of three modules of different time scale:

simulation of blood flow, simulation of muscle cells, and drug diffusion. The application

includes also scale-less transformation modules connecting ones which feature a scale

(scaleful). The scaleful modules and two-way transformation modules are implemented as

MUSCLE kernels. One-way converters are implemented as MUSCLE conduits.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 29 of 71

Drug Diffusion (DD)
Time:mesoscale

Blood Flow (BF)
Time:miscroscale

Smooth Muscle
Cells (SMC)

Time:macroscale

Initial conditions (IC)
Scale less

bf2smc
Scale less

smc2bf
Scale less

dd2smc
Scale less

C

C MUSCLE conduit = 1 way converter

C

Fig. 7. The Structure of In-stent Restenosis Application (2D version).

Fig. 8 shows an example skeleton (structure of application prototype) based on ISR 2D

structure; one can distinguish between different types of modules:

 initial condition (needed only at the beginning of the simulation),

 stateful modules containing actual simulation models,

 state-less modules being converters (either: 2-way ones - implemented as MUSCLE

kernels, or 1-way ones - implemented as MUSCLE conduits).

Scale ful
Time:mesoscale

Scale ful
Time:miscroscale

Scale ful
Time:macroscale

Init
Scale less

Scale less
2 way converter

Scale less
2-way converter

Scale less
2-way converter

Scale less
1-way

converter

Scale less
1-way

converter

Fig. 8. Application skeleton example based on In-stent Restenosis 2D structure.

MASK will enable the user to create and execute such a skeleton without actually filling the

computational loops of the models.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 30 of 71

7 Conclusions

This deliverable describes architecture and design of programming and execution tools layer

supporting the development and execution of multiscale applications. The key building blocks

of the architecture have been identified and their internal structure and functionality

described. Their description is based on the application, software and infrastructure review

described in D 4.1. In Tab. 2 we summarize the application requirements and indicate

solutions proposed in the Document.

Requirement Solution Proposed tool Section of

D 8.1

facilitate the design of

multiscale applications

to develop a common standard -

Multiscale Modelling Language

(MML)

Multiscale Application

Designer tool for supporting

creating applications in MML

 4.2 and

8.1.1

facilitate application

development

exploratory programming GridSpace Experiment

Workbench

8.1.2

efficient execution usage of the existing e-

infrastructures, resource

brokering, allocation

Execution Engine and

clients to interoperability

layer tools (QCG, AHE)

8.3.1

interactive execution exploratory programming GridSpace Experiment

Workbench

8.1.2

models reusability store module descriptions in a

registry

Models' Registry 8.2.2

applications descriptions'

reusability

store application descriptions in a

repository

Repository of textual

representation of MML

8.2.1

tracking application

execution, measuring tools’

efficiency

to build a provenance system Provenance tool 8.4

easy testing and verifying of

tools

multiscale application skeleton Multiscale Application

SKeleton framework

6

Tab. 2 Summary of multiscale applications requirements and proposed solutions.

The development of complex modern software is an iterative process. The presented design

of the tools will be subject to inevitable changes as user requirements evolve and new

circumstances emerge. However, the design presented in this document provides a solid

basis for the implementation of the first prototype of the tools.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 31 of 71

8 Annex 1. Detailed design

This Section describes components of the architecture presented in

Section 5.2 in more detail. Following subsections contains use cases and design diagrams

of the tools: Section 8.1 presents user interfaces and visual tools (Task 8.1), Section 8.2

described programming tools (Task 8.2), Section 8.3 – execution tools (Task 8.3),

Provenance is described in Section 8.4 (Task 8.4).

8.1 User Interfaces and visual tools

8.1.1 Multiscale Application Designer (MAD)

8.1.1.1 Use cases

The Multiscale Application Designer (MAD) will be a MAPPER's tool allowing users to build

multiscale applications in a graphical environment by using graphical multiscale modeling

notation (gMML). As explained in Section 4.2, gMML is a graph of submodels (graph

vertices) coupled by a set of connectors (graph edges). The MAD tool will assist users in

composing gMML graphs by providing a list of available modules from which suitable ones

will be placed on the tool's working space by using drag-and-drop techniques. The modules

can then be connected by appropriate connectors. If enough information is provided a gMML

graph can be visualized as a Scale Separation Map (SSM).

As depicted in the use case diagram below the Draw gMML use case includes three other

use cases. These are straightforward and represent MAD's ability to store, load and update

gMMLs. The format used to store the graphs is xMML, which is an XML implementation of

the graphical Multiscale Modeling Language.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 32 of 71

Fig. 9. Multiscale Application Designer use case diagram.

Because gMML is merely an abstraction of the actual application which, to run on the

MAPPER infrastructure, needs concrete execution descriptions (namely CxA or QCG Job

Profile scripts) the MAD tool provides suitable export facilities. The one worth mentioning

here is the GS experiment exporter which includes two other exporters. This is dictated by

the fact that GS can use both CxA and Job Profile descriptions for application execution.

The Visualize SSM use case produces a Scale Separation Map only in a read-only form. The

final map is build by using submodels' attributes describing its space and time constraints. If

a requirement of editable SSMs emerges it could be handled by MAD after specifying

dynamic relations between these notations.

8.1.1.2 Design

Multiscale Application Designer will provide a graphical editor which by employing drag-and-

drop techniques will enable users to construct gMML diagrams. Also, if required, each

element of the graph will have an option to be manually edited by the user. As depicted in the

picture below the editor will use external facilities such as XMML Repository, Module

Registry and export utilities.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 33 of 71

Fig. 10. Design of Multiscale Application Designer.

The XMML Repository component is used to store xMML documents together with all

necessary metadata, which are used to draw gMML graphs. The API provided by the

component will enable MAD to implement the CRUD (create-read-update-delete) set of

operations for users building gMML diagrams.

The Module Registry component provides information about existing modules which can be

part of the gMML diagrams. A set of such modules will be visualized by MAD for the user to

compose gMMLs by coupling them with suitable connectors. The registry will store extra

information about individual modules (provided during the process of registering a module)

which will be necessary to create concrete application descriptions (e.g. script templates,

infrastructure host details, etc.).

gMML diagrams will be stored by using xMML notation enriched by MAD's metadata holding

information about graphical representation of individual modules. Due to the fact that xMML

is an XML-based notation a separate namespace can be utilized to add these details.

MAD will also provide a utility for xMML export to more concrete application descriptions

which can be used to execute them on MAPPER's infrastructures. To make this a plugin-like

functionality an xMML Export Interface will be provided. Each export provider compliant with

the interface will be exposed in the user interface and to other providers. Example export

providers are to: Muscle CxA, QCG Job Profile and GridSpace Experiment.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 34 of 71

8.1.1.3 Transforming xMML to GridSpace Experiment

Generally speaking, GridSpace Experiment Workbench role is to support creation and

running of multiscale application expressed in Multiscale Modeling Language (MML). The

language itself is abstract so it needs to have representations: XML-based (xMML), and

graph-like (gMML) as shown in Fig. 11. xMML can represent complete MML (section A and B

in Figure 2) while gMML can represent only a basic skeleton of multiscale application

(section B). On the other hand gMML also models the graphical and layout information about

the application model (section C) that reaches beyond MML language but improve visual

modeling of applications. Aside visual modeling it is always indispensable to fill the high-level

description of application with more details (section A) to make the application complete.

Therefore, gMML editor needs to be backed with xMML editor where all this information has

to provide. However, high-level MML description of application is still not enough to make it

executable. Lacking parameters and code fragment need to be filled and stored in

experiment snippets. That's why additional schema (section D) needs to be intertwined with

xMML .

Fig. 11. Multiscale Modeling Language, its representations (xMML, gMML) and relation

to GridSpace Experiment.

Regarding storage aspect of MML, it can be serialized as xMML document with or without

graphical information extension of gMML (section C) and with or without experiment detail

(section D). Using dedicated XML schemas for MML information and additional graphical

information and experiment information, XML document can be a composite but still keeping

those aspects explicitly decoupled. Thus, MAD would read both these aspects to render

graphical representation of application, while GridSpace Experiment Execution Engine would

parse MML and experiment aspect of the application.

8.1.1.4 Transforming xMML to CxA

The CxA file contains all configuration needed to run a model using MUSCLE. The xMML

format already specifies this entire configuration except for parameters. Export provider will

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 35 of 71

be created, taking an xMML file and optionally a parameters file and it can generate the CxA

file.

8.1.1.5 Transforming xMML to QCG Job Profile

The QosCosGrid middleware (QCG) is a resource and task management system aiming to

provide supercomputer-like performance and structure to cross-cluster large-scale

computations that need guaranteed level of Quality of Service (QoS). QCG offers end users

efficient and secure access to dynamically discovered computational resources in grid

environment with a requested QoS. From the user perspective the main goal of the QCG

services is to manage the whole process of computational experiment in the way that

satisfies Users (Job Owners) and their applications requirements as well as constraints and

policies imposed by other stakeholders, i.e. resource owners and Grid or Virtual

Organizations administrators. The QCG services were integrated with MUSCLE library to

support multi-scale applications' use cases requiring co-allocation of heterogeneous

resources synchronized with the use of advance reservation mechanism. The description of

experiment to be submitted and controlled by QCG services must be expressed in the formal

XML schema based language called Job Profile describing as well the application itself

(executable, topology, arguments, input/output files and directories, etc.) as its requirements

in terms of resources and execution time.

Use Cases

The Job Profile is the e-Infrastructure level description and its complexity can be difficult to

understand for problem oriented scientists that expect the access to computation

infrastructure to be as easy and intuitive as possible without necessity to use anything else

then the xMML description of their model and application. The main motivation for the xMML

to JobProfile Transformation Module is to provide simple way to do automatic transformation

of the xMML description into the Job Profile, what will release the user from necessity to

know both description languages and will allow him to focus only on the problem itself. User

will have to provide the xMML description (template) of the application he wants to execute

on MAPPER e-Infrastructure with additional run specific parameters and the module will

transform this xMML document into the ready to execute Job Profile. The generated Job

Profile can be in next step submitted directly to QCG services to be executed on project

infrastructure or passed to any tool (for example GridSpace) to be validated or modified

before submission.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 36 of 71

Fig. 12. xMML to QocCosGrid Job Profile conversion - use case.

Design

Because both documents (xMML and Job Profile) are in XML format the key component of

the module will be the XSLT transformation. Additional advantage of the XSLT technology is

its independence from programming language. There are XSLT interpreters for mostly all of

popular programming languages. The java based API will be designed and implemented for

integration of xMML to JobProfile Transformation module with GridSpace EW. In case of

necessity of use of the module functionality with other then java language the direct use of

XSLT transformation with programming language specific XSLT interpreter is recommended.

Fig. 13. xMML to QosCosGrid Job Profile Translation Module - components and

design.

8.1.2 GridSpace Experiment Workbench

GridSpace Experiment Workbench (EW) [CIEPIELA] is the web portal facility intended to be

the interface for the end-users to perform activities related to composition and running

multiscale applications.

EW constitutes a single-sign-on entry-point for accessing whole MAPPER framework

functionality where all users' tools and facilities are integrated in order to provide single well-

equipped workbench. Therefore, EW is densely connected with other elements of the

architecture presented in Section 5 of this document.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 37 of 71

8.1.2.1 Typical use case

The typical use case scenario involves EW in the following way:

1. User logs in to the EW by providing login credentials to the selected subset of

Experiment Hosts (User Interface head machines of the clusters) or credentials used

by grid interoperability layer tools (e.g. login/password pair, GSI certificates). At least

one credential must be provided on logging in, however additional ones can be

provided any time when being logged in EW.

2. User creates mutliscale applications' gMML diagrams using MAPPER Application

Designer MAD graphical tool. Behind the scenes EW connects to the xMML Repository

(for storing and reading MMLs represented as XML documents for reuse) and to the

registry of modules metadata (for getting info about modules available in the MAPPER

environment).

3. The resulting diagram document is then transformed into GridSpace Experiment - a
sequence of steps (called Snippets, containing complete executable code) to execute by
GridSpace Execution Engine that backs the EW. The xMML document is first recognized
as a task directed acyclic graph (DAG) of loosely coupled elements (steps) as depicted in
Fig. 14. Single step can be a composite of modules which are tightly coupled with each

other other with MML dependencies, or elementary - involving just one module. In the

case of elementary module it is mapped directly to a snippet. A composite of tightly-

coupled modules - in turn - is transformed into a snippet containing Job Profile document

which is to be interpreted by a dedicated interpreter in GridSpace Execution engine (see

Section 8.3.1). Job Profile specifies which modules, how coupled are with which

parameters are to be executed.

4. The experiment run is coordinated by the GridSpace Execution Engine but is actually

executed on the e-infrastructure using appropriate interoperability layer (e.g. QCG,

AHE or direct connection to User Interface machines). If the application is interactive

(requires manual changes, feedback or decision during the execution), the flow goes

back to the EW.

5. The experiment execution status is traced and visualized on the application diagram in

MAD.

6. Obtained experiment results are put in the Results Management service and can be

viewed from within the EW using result viewers.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 38 of 71

Fig. 14. Generating GridSpaceExperiment from gMML diagram.

8.1.2.2 New features imposed by MAPPER's requirements

Being constantly under improvement and development process, EW needs to meet new

requirements that emerged during analysis of multiscale applications. Below, the major ones

are enumerated:

 Multiscale applications in its entirety can take time of days. It means that EW has to

support user logout during the course of application run. Even when user is offline

EW needs to continuously trace the run, buffer all data related to it. User has to be

given with a feature to re-log into the session started beforehand. The

corresponding mechanism of notification would be beneficial to let users know

about the progress in application run so he or she can re-log in and manage further

execution.

 MAD tool needs to be seamlessly integrated with existing tools for creating

experiments.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 39 of 71

 EW may need to proxy ordinary User Interface machines and expose GSI-HTTPS

server that would enable access to the data from other remote modules involved in

application run.

8.1.2.3 Files and Results Browsing in GS Experiment Workbench

The Experiment Workbench enables you to manage the files which you need for the

MAPPER applications to run (inputs) and to view the files which are produced by these

applications (results). There are basically two mechanisms of storing such documents

planned in MAPPER (see Section 8.3.2 for the detailed design of the result management

component). Both mechanisms will be provided to the user of the Workbench in the form of a

file (item) browser (see Fig. 15).

The current functionality of EW allows one to view the contents of one’s home directory. This

directory can be used to store experiments as well as any arbitrary files one may seem

useful while working with EW.

Fig. 15. Sample of remote directory contents after successful login to an execution

machine.

Using the actions toolbar one is able to perform the following operations in the browser:

return to the home directory, navigate to parent directory, refresh directory contents (useful

after application completed), create a new file of directory and upload files from your

computer. Moreover, a pull-down operations menu is available for each listed file. One can

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 40 of 71

access it by clicking the small arrow next to the selected filename. This menu contains the

usual options one expects for file handling: delete, rename, view in web browser (which

commands the immediate download of the file). Apart from these usual functions one may

also:

 Open (or run) experiment: Opens the file as an experiment in the Workbench (only for

experiments) and, if requested, immediately executes it.

 Use path in snippet: Pastes the file path in the currently active snippet window.

 Use contents in snippet: Pastes the file contents in the currently active snippet window.

 Open with: Brings up another menu which enables you to open the selected file using

a specific application. The list of available applications corresponds to the file

extension: GridSpace2 provides a selection of customized openers for popular file

formats (such as Jmol and JQplot). Of special importance for MAPPER is the CxA files

viewer, which allows to see the modules and connections of an application conforming

to the CxA description standard.

8.2 Programming Tools

8.2.1 XMML Repository

8.2.1.1 Use Cases

The main motivation behind the repository of multiscale application descriptions is to provide

users with the ability to save, load and update descriptions of multiscale applications

designed within the MAPPER framework. While the exact set and layout of multiscale

application descriptions is not yet fully decided upon, it is foreseen that each application will

be described using one or more MML (Multiscale Modeling Language) files, possibly in the

XML notation (called xMML).

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 41 of 71

Fig. 16. Multiscale application designers will be able to store and manage XMML descriptions
inside the repository.

Regardless of the exact notation and layout of the files, the main use cases of the repository

are straightforward to define (see Fig. 16). Using the MAD designer tool which assists in the

process of XMML definition, the authors are able to store the created description in the

remote repository. This description can be downloaded in order to adjust, extend, or remove

it (if no longer needed). The update process is actually a combination of the load-save pair of

functions.

8.2.1.2 Design

In order to deliver the functionality of XMML file storage, the repository is split into two main

building blocks (see Fig. 17). The former is responsible for storing the actual files in the

repository. Since the files will be rather small and not very numerous, this part of the

repository will use the underlying file system.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 42 of 71

Fig. 17. Proper handling of XMML description files requires appropriate file storage as
well as a means of capturing and persisting the accompanying metadata (author,
version, date etc.).

However, it is also highly likely that MAPPER users will require further information to be

stored along with the files. Information regarding authorship, ownership, versioning and

tagging might be handy for the designers of multiscale applications. To this end, the

repository will also be enhanced with metadata storage capability, based upon a dedicated

database.

On top of both modules, the persistence abstraction layer will provide a unified interface to

the storage mechanisms and a dedicated REST-like API for external tools (mainly the MAD

creation tool in the MAPPER portal) enabling other components to access the repository.

The abstraction layer and the storage mechanisms are described in detail in the following

section.

8.2.1.3 Persistence Abstraction Layer

This abstraction layer was extracted from the design of the XMML repository for reuse.

Owing to its genericity, the functions of this layer may be used by different elements of the

MAPPER framework. This includes the XMML repository, the scale module registry and the

result management tool (the latter two are described in other sections of this design

document).

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 43 of 71

Fig. 18. The Persistence Abstraction Layer provides generic file and metadata storage features
as well as customization via the domain model.

In order to be able to serve specific purposes in spite of its generic nature, the abstraction

layer is parametrized with a domain model (see Fig. 18). This is based on the idea

of semantic integration [SEMINT] and works as follows:

 for each specific usage area the abstraction layer is outfitted with a model which

described this area;

 depending on the use cases, the model consists of metadata (descriptor

documents with structure and key-value pairs), and, optionally, file model (not all

usage scenarios require storing files);

 an underlying schemaless (non-relational) DB server is used to manage the

persistence of descriptors;

 the abstraction layer ensures that the descriptor and file store remain in sync with

each other.

By using this general mechanism we are able to deliver the various features of the MAPPER

framework (XMML repository, result management, module registry). This makes the

framework less fragile (fewer design elements) and simpler to develop and deploy.

Moreover, should future design extensions become necessary (for instance to facilitate

provenance gathering, experiment storage and similar) the semantic integration technology

in place will help deliver them in shorter time.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 44 of 71

8.2.2 Registry for Application Modules

8.2.2.1 Use Cases

The main function of the registry of application (scale) modules is to deliver the required

information thereon to the designer of the application (at design time) and to the runtime

MAPPER components (at runtime) (see

Fig. 19. The registry of application modules serves both design and execution of multiscale

applications. We will discuss individual use cases in chronological order.

Fig. 19. The registry of application modules serves both design and execution of
multiscale applications.

First of all, the designer needs to register the modules the application will use. The developer

of a module might potentially also act as the designer of the multiscale application. Upon

module registration, design-related information might be provided. This, apart from the usual

authorship and licensing data, includes details on how the module fits inside an XMML

description of an application (please see the following section for a detailed list of metadata).

Once the module is registered and properly described, the designer may use it inside the

MAD creation tool (see Section 8.1.1) when building a new application.

When a newly designed application is executed in the MAPPER infrastructure, runtime-

related information (such as deployment and availability data of the module) becomes

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 45 of 71

important. This information is usually provided by the administrator of the e-infrastructure and

is automatically applied by the execution mechanisms within the MAPPER middleware to find

and run the particular simulation module.

8.2.2.2 Module Descriptor Information

This section lists the initial set of metadata that needs to be stored in order for a simulation

module to be useful for multiscale application designers and to be executable at runtime.

The module metadata required by application designers should comprise information stored

in the XMML file, in the “submodel” section:

 name (which serves as a unique identifier), version;

 information whether module is initial, stateful or interactive;

 scale information: time, space, user-defined;

 optional model properties, important for connecting to other submodules (e.g. size

of data items exchanged using ports);

 input and output ports: what kind of MML operator they are assigned, the data type

exchanged using each port;

 implementation details: size, runtime, memory, cores, platform, language, required

libraries.

In addition, module metadata should cover infrastructure-related data – specifically, the list of

sites where the module is installed coupled with information on how to run it, e.g.:

 the home directory of the module;

 the environment module name which sets up the environment for the (scale)

module.

In the first version of the Module Registry this information will be provided and maintained by

the e-infrastructure administrators (as depicted in Fig. 19). In the final version we may

consider an approach based on gathering information by polling various information and

monitoring services already present in the e-infrastructure, e.g.: Berkeley Database

Information Index (BDII), Common Information Service (CIS), Nagios or Inca (as shown in

Fig. 20).

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 46 of 71

Fig. 20. Preliminary scenario of aggregating various information and monitoring

services used in different e-infrastructures.

8.2.2.3 Design

The design of the registry follows the design pattern established for the XMML repository

component (see Fig. 17). It uses the persistence abstraction layer to store the required

metadata about simulation modules of MAPPER applications. Please consult Section 8.2.1.3

for a detailed design of this abstraction layer. Note that, contrary to the XMML repository

component, the module registry does not require file storage. This is due to the fact that no

module itself is stored here – all modules are assumed to be deployed in the e-infrastructure

and the registry only stores metadata about each module.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 47 of 71

Fig. 21. The module registry re-applies the persistence abstraction layer with a
different domain model to store simulation model metadata.

8.2.3 SBML toolbox

COPASI [HOOPS] is a software application for simulation and analysis of biochemical

networks and their dynamics. It is a standalone program that supports models in

the SBML standard and can simulate their behavior using ODEs or Gillespie’s stochastic

simulation algorithm; arbitrary discrete events can be included in such simulations. COPASI

carries out several analyses of the network and its dynamics and has extensive support for

parameter estimation and optimization. Additionally, it provides means for visualizing data in

customizable plots, histograms and animations of network diagrams.

COPASI can be used in two different executable versions: a graphical user interface

(CopasiUI) and a command line version (CopasiSE) which only contains the calculation

engine. CopasiSE is intended for situations in which the user is not expected to interact

with the software. The following use cases are examples of situations in which it would be

used:

 when third-party programs manipulate COPASI files, call CopasiSE to produce

results, and then inspect and continue generating other COPASI files depending on

results;

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 48 of 71

 to run simulations “in the background”, which is useful when the run takes a long

time;

 as a simulation engine for specialized front-ends that may be created by others.

Key features of Copasi that interest us:

 Imports and exports SBML files;

 User-friendly GUI;

 ODE solver using LSODA [PETZOLD];

 Several optimization algorithms for minimizing an objective function: genetic

algorithms, particle swarm, random search, simulated annealing etc.;

 Several APIs available in C++, Java and Python through which the programmer

can directly use Copasi’s internal routines;

 A CLI executable is available, useful for running batch jobs;

 Available under the open-source Artistic license 2.0.

We aim to use COPASI, among other tools, to build a “package” with our data and software

routines which can then be used in MAPPER. Depending on how we will integrate COPASI,

two usage scenarios are possible:

1. Our first option is to use COPASI only for its user interface, in order to create the

initial models and generate the data sets. In order to enable support for running the

reverse engineering and sensitivity analysis, we would need to provide several

other features, such as an ODE solver, our own implementations of optimization

algorithms and a script that would integrate all of these components and enable

them to run on MAPPER’s middleware layer.

2. Our second option would free us from having to provide our own implementations

for optimization and algorithms or use 3rd party software, by gaining access to

COPASI’s internal routines. The existing APIs provide many important features, the

most important ones being:

 Creating and saving a model;

 Loading and processing a model;

 Running a timecourse simulation;

 Running a parameter scan over a timecourse simulation;

 Running an optimization task.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 49 of 71

8.3 Execution tools

8.3.1 GridSpace Experiment Execution Engine

GridSpace Experiment Execution Engine (E3) backs GridSpace Experiment Workbench

(EW) and takes responsibility for coordination of experiment run. As shown in Fig. 22, it

submits exepriment parts (snippets) to Experiment Hosts (either User Interface machines or

to meta-brokers). Each snippet would have assigned Experiment Host where it needs to be

run, an interpreter that is installed on the Experiment Host that is in charge to evaluate

snippet code. Snippet would be executed on one of many Experiment Hosts where user is

granted to connect. Snippet is interpreted by exactly one interpreter. Interpreter would be of

two kinds:

 regular interpreter - it maps one to one to the single executable program (possibly

distributed) on e-Infrastructure, so the code of the snippet is interpreted by the

program. Interpreter is run submitted to be via Experiment Hosts that support,

 pseudo-interpreter - doesn't correspond to any program but to a meta-scheduler. Then,

the code of the snippet is rather job specification containing information on executable

programs to run along with their run parameters.

Fig. 22. Functionality of GridSpace Execution Engine.

Currently, it's configurable in E3 what interpreters are available. In the case of regular

interpreters it's a simple entry in E3 configuration that specifies on which resource, which

executable is be considered as an interpreter. For MAPPER's use this configuration needs to

be synchronized with the modules registry. Regarding pseudo-interpreters they are plugged

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 50 of 71

in the E3 as dedicated software modules through extension point of Interpreter Provider

Interface which is defined by a set of classes and interfaces. This is the way QosCosGrid

GRMS and AHE clients will be incorporated in E3.

8.3.1.1 New features imposed by MAPPER's requirements

Being constantly under improvement and development process, EW needs to meet new

requirements that emerged during analysis of multiscale applications. Below, the major ones

are enumerated:

 Multiscale applications are likely to span over a number dispersed and heterogeneous

clusters and HPC resources. Therefore, snippets, although in the scope the same

experiment, have to be enabled to be targeted to different Experiment Hosts or meta

brokers.

 Experiment Hosts and meta brokers involved in the application run differ in connectivity

and user authentication methods. Therefore, EW has to support a number of methods

starting from SSH and GSI-SSH to GSI-enabled meta brokers.

 Since multiscale applications may extensively process and exchange data, EW has to

ensure effective staging of data sources. Again, the data management depends on the

underlying e-infrastructure capabilities and mechanisms and EW need to seamlessly

integrate with them. For example, EW may proxy ordinary User Interface machines

and expose GSI-HTTP ot GSI-FTP server that would enable access to the data from

other remote modules involved in application run.

 EW has to support fine-grained execution of experiments including check-pointing and

partial re-execution. It means EW need to track the artifacts being produced and

consumed in course of the experiment run by the respective snippets in order to avoid

unnecessary recomputing of already computed results. Artifact-based record of check-

points would enable partial re-execution.

8.3.1.2 GridSpace Experiment Execution Engine - AHE plugin

AHE (Application Hosting Environment) [ZASADA, ZASADA2] is a frontend for running

applications on Grid infrastructures hosting Globus, UNICORE or GridSAM middleware. It

also supports cross-site MPIg applications and HARC reservations. To accomplish this AHE

delivers a set of stateful web services (implemented with the WSRF:Lite toolkit) which can be

contacted by a command line or GUI client (Java API extraction is also possible for

programmatic calls).

After authenticating with a suitable credential (e.g. proxy certificate) the client may be used to

execute one of the available applications. Application-specific parameters and input files are

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 51 of 71

automatically transferred to the execution node. During execution the same client is used to

monitor the state of execution and after its finished result files are transferred back to user's

machine.

From the GridSpace perspective such frontend can be used to launch applications on Grid

as part of a loosely-coupled MAPPER application independently of the underlying

middleware. Input and output files, as well as, proxy delegation is handled by AHE. Also, if

such need emerges, it is possible to register additional applications/scripts hosted by AHE.

However, this would require deploying software on the underlying Grid infrastructures.

AHE client details

AHE provides scientists with application specific services to utilize grid resources in a quick,

transparent manner with the scientific objective as the main driver of the activity. The AHE

provides resource selection, application launching, workflow execution, provenance and

data-recovery.

The AHE client is designed to be easily installed on an end user's machine, requiring only

that the user has a Java installation and an X.509 certificate for the grid, which they want to

access. The client package contains both GUI and command line clients, which interoperate,

allowing jobs launched with the GUI client to be manipulated with the command line tools

and vice versa.

The AHE client can also be used as an API, making it easy for other tools to launch remote

grid based applications via AHE. AHE can submit to a variety of back end resource

managers, including GridSAM, Unicore 6 and Globus GRAM 4. A proxy certificate, stored on

a MyProxy server, is used by AHE to submit jobs on a user's behalf. The detailed description

of AHE client usage can be found in the Annex (Section 10).

8.3.1.3 GridSpace Experiment Execution Engine - QosCosGrid GRMS plugin

QosCosGrid [KUROWSKI] exposes an interface for submitting, monitoring and managing

jobs - considered as a collection of computation tasks with dependencies between them -

through GRMS service/ This service is implemented as a web service-accessible resources

using Globus Toolkit. Aside other trivial operations on jobs, the most vital part of this

interface is about describing jobs using XML-based - so called - Job Profile document.

There are several points of linkage between QocCosGrid and GridSpace identified, namely:

 Submitting job. GridSpace Experiment Workbench (portal) needs to be enabled to

submit and monitor jobs through GRMS. In particular, Experiment Workbench has to

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 52 of 71

generate propoer Job Profile descriptors basing on the user-provided business-logic

code as well as other remarks on how the job is supposed to be run. (e.g. what

resources involve).

 Staging data in and out. GridSpace needs to ensure accessibility of data files used

by jobs running on the QosCosGrid infrastructure. The scope of this problem reach

beyond GridSpace and QosCosGrid, but also relates to the way GridSpace and

QosCos Grid deals with a storage infrastructure of the MAPPER framework.

 Delegation of security credentials. GridSpace Experiment Workbench needs to pass

security credentials to GRMS service which, on behalf of the GridSpace (precisely: on

behalf of a user being logged in in the GridSpace Experiment Workbench), accesses

data and computational resources. This also means that resources accessed by task

running on QosCosGrid need to support delegated security credentials.

QCG client details

For the integration purposes with other MAPPER services like GridSpace2 or Application

Hosting Environment (AHE) and for direct use by end-users the API and java based

command-line client to QCG-Broker service was implemented. The QCG-Broker has been

implemented as federations of WS-I compliant web services using a WS-Addressing

approach as a standardized way of including message routing data within SOAP headers.

The security model assumes usage by clients X509 proxy certificates signed by trusted

Certificate Authority (CA) for authentication and authorization purposes. The integration

between QCG services and other tools and services developed in MAPPER project can be

done using either the java API or the command-line client taking internally advantage of the

aforementioned API. As it was stated the QCG-Broker has a WebService interface described

formally by WSDL format document what makes it accessible from any language supporting

the web services technology. The QCG-Broker client is delivered as package containing set

of jar-type files and lunching script. The detailed description of QCG client usage can be

found in the Annex (Section 11).

8.3.1.4 Access to TeraGrid resources.

TeraGrid resources are accessible via a regular remote shell login. This E3 communicate

with the resources through (GSI-)SSH protocol. Behind the scene the cluster uses Sun Grid

Engine (version 6.2) as the batch job submission system so in order to use it smoothly from

GS2 one might need a compiled SGE Gem (see D4.1).

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 53 of 71

8.3.2 Result Management

8.3.2.1 Use Cases

The usage scenarios of the result management component are quite simple (see Fig. 23).

The functionality will be delivered through a conceptually simple interaction of browsing,

uploading and downloading files on a remote server. While the notion of an application

result might be considered more general than just files, the practical approach is to handle

such objects as files (mainly due to large size of the results in comparison to available

operational memory).

Fig. 23. The functionality of the MAPPER result management component from the
point of view of a person running an instance of a MAPPER application.

The user of a MAPPER application will be able to upload the files onto a server (where they

are available for the application simulation modules as the input), browse what output was

produced by application runs and, when desired, download that output to the local computer.

8.3.2.2 Design

The design of the result management component takes into consideration two possibilities

for the result storage mechanism (see Fig. 24). The first possibility is relatively

straightforward - the user accesses the remote machine (through the Experiment Workbench

portal) and is able to browse the contents of his or her home directory on the remote file

system. This is done with the help of the ssh/scp protocol being employed to relay the user

communication through the GridSpace server (which hosts the Experiment Workbench web

application) up to the target login machine, See Section 8.1.2 for the details. Therefore,

whenever the user uploads or downloads a file, the file is eventually being handled by the file

system mechanism on the login host.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 54 of 71

Fig. 24. The result management in MAPPER is delivered both through the direct
access to user's files on a target machine and through a dedicated result location
registry (for other means of result persistence, like dedicated storage facilities).

Another possibility of file storage mechanism is being delivered through the reuse of the

persistence abstraction layer (see Section PAL-SECTION). This approach will be needed

when some dedicated result storage facilities (like e.g. gridftp servers or LFC file catalogues)

are employed within the MAPPER framework. In such a case the result management will

store the relevant information about the location and the retrieval method for a particular

application execution result (for instance, a gridftp URL or an LFC logical file name).

Please note that, in contrary to the design of the XMML repository (see Section 8.2.1), the

result management is not planned to use the the built-in file management component to

handle application execution result files. This is due to the expected large amount and size of

such data - the file storage mechanism built in the persistence layer is rather suited for

smaller documents.

8.4 Provenance

8.4.1 Use cases

The central issue connected to the provenance relates to collecting information about how a

given experiment was carried out step-by-step along with the associated parameters, inputs

and outcomes. In particular, provenance will be used to answer the following questions:

 who conducted the experiment,

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 55 of 71

 where was the experiment carried out (a particular execution environment: AHE, QCG

etc.),

 how a given outcome was obtained (i.e. whether it was created by a process being

part of the experiment); this concerns the final outcome as well as any intermediate

values (e.g. parameters passed from one process to another one, partial results etc.),

 which processes were involved in experiment execution.

The aforementioned information can be used to:

 find possible mistakes and errors in an experiment design or execution; for example

an experiment designer may regard a given outcome as invalid. Using provenance

data he/she may start to examine intermediate results to find the one that was invalid

and a process that returned it,

 improve the experiment to be more efficient or accurate; provenance may be helpful

to figure time-consuming processes and flaws in the experiment design (i.e. multiple

invocations of the same process).

Use cases for Provenance collector (a component responsible for collecting and providing

provenance data) are shown in Fig. 25.

The Experiment Executor is responsible for executing a whole experiment. Since it has the

most complete knowledge of entities of the experiment its responsibility is to insert the traces

of experiment execution into the provenance subsystem.

Annotation is enriching raw provenance data with a proper context of experiment (semantics

regarding variables - names, values as well as processes etc.). Again, the Experiment

Executor is suitable for this task. Moreover, the Result manager is also helpful as it may

contain valuable data about experiment results that also have to be annotated.

Fig. 25. Use cases for Provenance collector.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 56 of 71

Finally, provenance collector enables external components to query for collected data using

special query languages.

8.4.2 Design

Fig. 26 presents a high-level view on the provenance subsystem. The component will have

two well-defined interfaces to communicate with other components: query and trace storing.

The former may be used by a query browser or other entity to request provenance data. The

latter is used by components that possess any knowledge on the experiment execution

process or information about the experiment itself (such as the Experiment Executor or

Result Manager) to notify the provenance subsystem about significant events.

The exact implementation of these interfaces will be based on popular, well-known interfaces

like REST.

Fig. 26. The design of Provenance system.

There are three main components of the Provenance system:

Query Engine is used to accept queries from other entities regarding the collected

provenance data. It verifies a request and processes data in the Storage Engine,

accordingly. A result is sent back to the entity that has issued the request. A typical use

would be a web application sending a request using REST protocol, receiving a response

written in JSON format and displaying it in a proper way to the user.

Data Tracker is a component that keeps track of the events that occur when running an

experiment. This can be done in two modes. The first one is passive, meaning the tracker

awaiting traces from external components on well defined interfaces (as mentioned before).

The second one is active which means observing changes in the experiment execution

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 57 of 71

environment: log files, creating outputs etc. Each trace input format (files, execution engine

traces etc.) will have its own entry point installed as plugin.

Storage Engine is used to provide the persistence of the gathered provenance data. The

exact format and implementation depends on the assumed provenance data representation

(please see Section 8.4.5). For RDF format a triple storage is the best way. An alternative

may be a Sint storage for Semantic Integration (please see Section 8.4.5).

8.4.3 Data definition

Provenance data can be defined as a direct acyclic graph as in Open Provenance Model

(http://openprovenance.org/). As it is meant to be used in scientific and business workflows it

should be suitable for the considered system.

Each node represents a single entity: process, artifact, and agent. Artifact represents a piece

of state of any "thing" present in the experiment environment: file, variable, input data etc.

Artifacts cannot be changed, they only can be produced by processes. Agents represent the

context of a process execution (why it was invoked, who did it and where).

Artifact examples:

 input data,

 experiment results,

 user inserted parameters,

 any parameters exchanged by processes taking part in a workflow.

Process examples:

 any process executed on UI.

Agent examples:

 a workflow,

 an execution engine.

These entities are connected with dependencies. These are the edges of the provenance

graph. The thorough set of dependencies is yet to be discussed. Examples include:

 process uses an artefact,

 process created an artefact,

 process invoked a process,

 artifact was derived from another artefact,

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 58 of 71

 agent controls a process.

The detailed semantics of these relations can be found in the OPM specification.

8.4.3.1 Annotations

The aforesaid data structure does not provide any semantic value (is domain agnostic). For

example, the following information that is very usable is not provided:

 timestamps of process start and finish,

 parameter names and values,

 artifact types (file, user input) and semantic (star age, protein type etc.),

 user names.

In order to provide these information annotations will be introduced into the graph. Each

node or edge may have an arbitrary number of annotations. Typical annotations are:

 timestamps of process start and finish,

 parameter names and values.

Annotating is a complex task and requires cooperation of several components, e.g. of the

Execution Engine or Result Ranager. Exact annotation sources and annotation types are yet

to be defined.

8.4.4 Provenance data acquisition

One of the main issues of provenance is provenance data acquisition. Each process

invocation or finish, artifact creation, or agent action has to be reported. This should be done

by the Execution engine and the UIs involved. Therefore, an instrumentation of process

executors is required. Some UIs will have their own provenance capabilities (i.e. GridSpace)

that can be used for the discussed purpose.

Similarly, some data can be derived from the experiment in an non-invasive way. Below

there are some examples:

• XMML files: they contain some initial parameters, model identifiers (both annotate

processes); it is a valuable source of annotations,

• process execution log files (start and finish timestamps).

8.4.5 Data sharing and querying

Provenance data has to be accessible to users or other components in a way that enables

answering questions mentioned in Section 8.4.1. Moreover, it should be possible to retrieve

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 59 of 71

all the information (properties) about any specific provenance entity (process, artifact, agent).

This can be done using several approaches. Two of them are especially noteworthy:

 Provenance data will be published using RDF. It is a well established format often

used to share scientific data even between completely different systems or execution

environments. All querying operations can be performed using a dedicated query

language based on SPARQL. This solution requires an efficient storage for RDF

triples as they will be read and searched for extensively.

 Semantic Integration [GUBALA] - this approach has already been used in some

experiment execution environments (ViroLab) for exchanging information between

experiments from different domains. Moreover, it uses a storage solution that is used

in GridSpace to ease integration. However, this solution has not been used for

provenance purposes therefore it has to be checked for typical provenance queries

support.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 60 of 71

9 Annex 2. MAPPER Application Technical Inquiry

9.1 Goal
The goal of this inquiry is to start collecting technical information about applications to be

supported in the scope of the MAPPER project. Complete and detailed application

descriptions are crucial to successfully address MAPPER objectives of adaptation of existing

software tools and emergence of new ones facilitating multiscale application development

and operation. We believe that this inquiry is the best way to get technical Work Packages

familiarized with applications and a good starting-point for further cooperation.

9.2 Instructions

As it’s always very hard to approach all the individual cases with generic inquiry, feel free to

include all the information you consider vital even if not foreseen by the questions below. If

any of the questions doesn’t concern your particular case – please omit it. Please send filled

out inquiry to katarzyna.rycerz@agh.edu.pl. As soon as official MAPPER document

repository is launched, the inquiries will be filed there.

9.3 Questions

 What is the name of the application?

 Who is the contact person in technical matters concerning the application?

 Which are the most relevant publications describing the application? Are there any

user or developer manuals?

 Is the application software freely available as open source or as a binary?

 What is current status of the application (concept, design, development of first

prototype, first prototype, further development and version, release, deployment)?

Are all the computing steps or components of equal maturity, or do some require

further development to be more stable/usable/deployable/reusable?

 What is the concept of the application? How would you depict the structure of the

application? How the application is composed? What are the components?

 What are the scales covered by each simulation module of the application?

 What are the differences between application runs? Do you only change parameters

and input data, or does the structure of the application change between runs (can e.g.

some steps be skipped or replaced)?

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 61 of 71

 Where do the computations take place? Where do the respective components

operate? On which computational resources they run (clusters, high-performance

computers, single computer - desktop, grid)? What is the architecture of the

computers used (multicore, symmetric multiprocessing, massively parallel

processing) ?

 How do components deal with information exchange?

 Do they communicate through message passing? If so, how large and how

frequent the messages are?

 Do they share data (in memory, database, files or other)?

 Where are the input and output data stored?

 How do the scales correspond - i.e. what is the direction of data feed from one

module to another and whether there is a feedback or not?

 How large are these data feeds, i.e. how large a data chunk needs to be

conveyed between models every communication step?

 Is that data a binary or a plain text document?

 Do you need the data passed from one model to another converted or adjuste

d?

 What external (not developed by yourselves) libraries, software modules, frameworks,

services your application makes use of?

 How long a typical production run on a target (suitable) computing platform of a

module would take?

 Which of the GridSpace functionality presented during Kick-off meeting (see agenda

and be there) do you find potentially useful for your application:

 script-based application building support

 direct SSH connection to target machines and working with your home

directory files through a web interface

 components supporting time management between simulation modules

 iBuilder (graphical application building support)

 registry for intermediate and final results of the application runs, to be browsed

and viewed later on.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 62 of 71

 result provenance - to be able to see metadata information about produced

past results (origin, process of production, timestamp, etc.) and to be able to

query by such metadata

 other presented - please specify

 other not presented - please specify.

 Are you familiar with CellML (http://www.cellml.org/) or SBML

(http://sbml.org/Main_Page) concepts of storing and exchanging computer-based

mathematical models? If yes, do you find them useful for your application? Why? Do

you think you will need a special language describing your models to share them with

other potential users?

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 63 of 71

10 Annex 3. The AHE client usage

Operation Description

ahe-listapps -e endpoint -a application -help

Lists the applications available in the AHE

application registry. Upon successful

submission the command displays the

applications available from this AHE server

installation, with job factory endpoints.

ahe-destroy -s simname -i index -r -e endpoint

-help

Destroys the simulation from the AHE job

registry. Upon successful submission the

command reports that the job has been

destroyed.

ahe-prepare -RMVirtualMemory

virtualmemory -RMMemory memory -e

endpoint -RMIP ipaddress -help -s

simulationName -wallTimeLimit time -RMArch

arch -RMDisk disk -app application -RMType

NGSorTeragrid - RMCommonName rmname -

RMOpSys opsys -RMCPUCount cpucount

Creates a stateful resource on the AHE

server to manage the job, and returns a list of

potential machines to run the job. Optional

arguments can be used to constrain the list of

machines returned. Upon successful

submission the command displays a list of

the potential target machines that the job

could be run on.

ahe-start -s simname -i index -n cpucount -

wallTimeLimit time -config file -RM rmname -e

endpoint -help

Processes the job configuration file to

discover job input and output files, stages

those files to the intermediate webdav server,

and submits the job to the specified target

machine. Upon successful submission the

command reports the status of the job.

ahe-monitor -s simname -i index -e endpoint -

help

Reports the status of job. Upon successful

submission the command reports the AHE

status of the job.

ahe-getoutput -s simname -i index -d -e

endpoint -l localdir -help

Retrieves a job's output files to the local

machine. By default files will be staged back

to the location specified in the job's

configuration file. Note that output can only

be retrieved when the job's status is AHE

DONE (see ahe-monitor). Upon successful

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 64 of 71

submission the command will retrieve the

job's output files to the specified location.

ahe-getproperties -s simname -i index -e

endpoint -help

Upon successful submission the command

displays the properties associated with the

specified job, including the job's input and

output files and status. Lists the applications

available in the AHE application registry.

ahe-list -e endpoint -help

Lists the jobs owned by the submitting user in

the AHE job registry, and caches the result

locally. Upon successful submission the

command displays the jobs contained in the

registry and updates the local job cache.

ahe-terminate -s simname -i index -e endpoint

- help

Terminates a running job. Upon successful

submission the command reports the job has

been terminated.

ahe-refresh -e endpoint -help
Upon successful submission the command

updates the local job cache.

An AHE application can have one of the following states:

 AHE_PREPARING - The AHE Application instance is being constructed

 AHE_FILES_STAGED - Files have been staged to the intermediate file staging

area

 AHE_JOB_BUILT - The AHE application instance has been constructed.

 AHE_PENDING - The AHE application instance is being scheduled.

 AHE_STAGING_IN - Data is being staged to the remote resource.

 AHE_STAGED_IN - Staging data to the remote resource is complete.

 AHE_STAGING_OUT - Data is being staged from the remote resource.

 AHE_STAGED_OUT - Staging data from the remote resource is complete.

 AHE_ACTIVE - The application is running.

 AHE_EXECUTED - The application execution has completed.

 AHE_FAILED - The application failed.

 AHE_DONE - The application instance is complete.

 AHE_UNDEFINED - An undefined state has occurred.

 AHE_TERMINATING - The application instance is being terminated.

 AHE_TERMINATED - The application instance has terminated

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 65 of 71

11 Annex 4: QCG client usage

The command-line java based client to QCG Broker can operate in two modes:

 batch mode – that executes single operation with arguments passed directly to the

client during its invocation. The batch mode allows to use the client in any kind of

scripts mostly in cases when the processing of output is needed to steer the

experiment,

 console mode – that works similar to shell console in which user can type in lines with

operations and arguments to be executed by service. The console mode gives

additional useful features like aliases, history accessible by arrows-keys, creation and

management of user proxy, help functionality.

The usage of the QCG client depends on the mode:

 for batch mode: “grms-client OPRATION [ARG1 .. ARGn]”

 for console mode: “grms-client -console” and then user is prompted to type in lines in

format “OPERATION [ARG1 .. ARGn]” to be processed by client.

Regardless from the mode the QCG-Broker java based command-line client supports

following list of operations:

Operation Description

submit_job <desc_file> [GRMS | JSDL]

submits a job to be executed. The description of

job can be expressed either in native QCG-

Broker language or if it is possible in JSDL one. If

the description is valid client returns to the user a

globally unique job identifier, which

unambiguously identifies the job in the system.

QCG defines jobs as a sets of dependent tasks

that constitute a logical whole (workflow). Each

task is executed by system only if all tasks it

depends on are in specified by the user states.

list_jobs [<limit>] [<status>]

lists jobs belonging to the user. It is possible

either to limit number of jobs or to display only

ones in given state. All possible states are listed

below the table.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 66 of 71

list_user_jobs [<limit>] [<status>] <user>

lists jobs belonging to the given user. The

functionality is destined for administrative

purposes.

test_description<desc_file> [GRMS |

JSDL]
validates job description

translate_description<desc_file> JSDL
translates job description to native QCG-Broker

one

job_info <jobId> [showJobDesc]

return complex information about the given job. If

the showJobDesc is false the job description is

not shown

cancel_job <jobId> cancels execution of the given job

commit_job <jobId>

allows to approve the job submitted with two

phase commit mechanism to be processed by

the system. The two phase commit mechanism

can be used to register notifications before the

processing of the job will be started by broker.

list_tasks <jobId> [<status>]

lists tasks belonging to given job. Optionally it is

possible to specify the task's status. Possible

task statuses are listed below the table.

tasks_statuses <jobId> <summary>
lists tasks constituting the given job with their

statuses

register_job_notification<jobId> <url> registers notification consumer for the given job

list_job_notifications<jobId> lists notifications registered for the given job

register_tasks_notification<jobId> <url> register notification for all tasks of the given job

monitor_job <jobId> <interval>
monitors status changes of tasks belonging to

given job

monitor_task <jobId> <taskId> <interval>
monitors status changes of allocations belonging

to the given task

task_info <jobId> <taskId> [showDesc

[limit]]

displays information about the given task. If the

showDesc is false the task description is not

shown. If the limit is specified the history of the

task is limited to given value.

register_task_notification<jobId>

<taskId> <url>
registers task's notification consumer

list_task_notifications<jobId> <taskId> lists task's notifications

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 67 of 71

cancel_task <jobId> <taskId> cancels execution of the given task

commit_task <jobId> <taskId>
commits the given task to be processed by the

system

reserve_resources[<taskId>]<job_desc> [

GRMS | JSDL]

reserve resources that meet either the wole job

or given task requirements. The reservation

identifier is returned

reservation_info<reservationId>

return complex information concerning the given

reservation: list of reserved resources, local

identifiers of reservations, reservation time slot

cancel_reservation<reservationId> releases reserved resources

List of Job statuses:

 UNCOMMITTED - the job was submitted with two phase commit option and waits to be

committed,

 SUBMITTED – the job was submitted to the system and is executed by the system,

 SUSPENDED – the job was suspended,

 ACTIVE – the job is active, at least one task is processed,

 FINISHED – the job was completed,

 FAILED – the job (at least one crucial task belonging to the job) failed

 CANCELED – the job was canceled by the user,

 BROKEN - one or more of crucial tasks failed, system waits until active tasks will finish

and change the status of the job to FAILED.|

List of Task statuses:

 UNSUBMITTED – the task cannot be started because of dependencies,

 UNCOMMITED - the task waits to be committed,

 QUEUED – the task was put into the queue and waits for execution,

 PREPROCESSING – system makes some actions needed to start the task (looks for

the resource, stages in files),

 PENDING – the task is pending in the queueing-system,

 RUNNING – the task is active,

 STOPPED – the task was finished or was checkpointed, but system did not start

staging out files,

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 68 of 71

 POSTPROCESSING – system makes some actions needed to complete the task, for

example stages out files, cleares working environment, etc.,

 FINISHED – the task was completed,

 SUSPENDED – the task was suspended,

 FAILED – the task failed,

 CANCELED – the task was canceled by the user.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 69 of 71

12 References

[CAIAZZO] Alfonso Caiazzo, David Evans, Jean-Luc Falcone, Jan Hegewald, Eric Lorenz,

Bernd Stahl, DinanWang, Jorg Bernsdorf, Bastien Chopard, Julian Gunn, Rod Hose,

Manfred Krafczyk, Patricia Lawford, Rod Smallwood, Dawn Walker, and Alfons G. Hoekstra.

Towards a Complex Automata Multiscale Model of In-Stent Restenosis; ICCS 2009, Part I,

LNCS 5544, pp. 705–714, 2009

[CIEPIELA] E. Ciepiela, D. Harezlak, J. Kocot, T. Bartynski, M. Kasztelnik, P. Nowakowski,

T. Gubała, M. Malawski, M. Bubak; Exploratory Programming in the Virtual Laboratory, in

Proceedings of the International Multiconference on Computer Science and Information

Technology pp. 621–628

[COLE] Murray Cole. "Algorithmic Skeletons: structured management of parallel

computation" MIT Press, Cambridge, MA, USA, 1989

[COSTER] David Coster. Plasma Physics: Scientific and Computational Challenges: Fusion,

EFDA, ITM and EUFORIA. 9th International Conference on Science, Arts and Culture. Veli

Lošinj (Croatia). 2009.

[ENGQUIST] W, Engquist B, Li X, et al. Heterogeneous Multiscale Methods: A Review.

Commun. Comput. Phys. 2007; 2: 367-450.

[FALCONE] J.-L. Falcone, B. Chopard and A.G. Hoekstra. MML: towards a Multiscale

Modeling Language. Procedia Computer Science (2010) vol. 1 (1) pp. 819-826

[GONZALEZ] Horacio González-Vélez and Mario Leyton "A survey of algorithmic skeleton

frameworks: high-level structured parallel programming enablers" Software: Practice and

Experience Volume 40, Issue 12, pages 1135-1160, November/December 2010

[GUBALA] T. Gubala, M. Bubak, P.M.A. Sloot: Semantic Integration of Collaborative

Research Environments, Chapter XXVI,in: M. Cannataro (Ed.), Chapter XXVI, Handbook of

Research on Computational Grid Technologies for Life Sciences, Biomedicine and

Healthcare, Information Science Reference, 2009, IGI Global ISBN: 978-1-60566-374-6

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 70 of 71

[MUSCLE] Jan Hegewald, Manfred Krafczyk, Jonas Tölke, Alfons G. Hoekstra, and Bastien

Chopard. An agent-based coupling platform for complex automata. In Marian Bubak, G. Dick

van Albada, Jack Dongarra, and Peter M. A. Sloot, editors, ICCS (2), volume 5102 of Lecture

Notes in Computer Science, pages 227–233. Springer, 2008.

[HLA] High Level Architecture IEEE standard 1516

[HOEKSTRA10] Hoekstra et al. Complex automata: multi-scale modeling with coupled

cellular automata. Simulating Complex Systems by Cellular Automata (2010)

[HOEKSTRA07] Hoekstra et al. Towards a complex automata framework for multi-scale

modeling: formalism and the scale separation map. ICCS 2007 (2007)

[HOOPS] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,

Mendes, P. & Kummer, U.: COPASI – a COmplex PAthway Simulator, Bioinformatics,

22(24):3067–3074, 2006.

[KUROWSKI] Kurowski K, Kravtsov V, Schuster A, et al. Grid-enabling complex system

applications with QosCosGrid: An architectural perspective. In (eds). The Int’l Conference on

Grid Computing and Applications (GCA'08), vol. 2008,

[MCT] .Larson, R. Jacob, E. Ong ”The Model Coupling Toolkit: A New Fortran90 Toolkit for

Building Multiphysics Parallel Coupled Models.” 2005: Int. J. High Perf. Comp. App.,19(3),

277-292

[PETZOLD] Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems

of ordinary differential equations. SIAM J. Sci. Stat. Comput.. 4. 136 - 148. 1983.

[RYCERZ10] K. Rycerz, M.Bubak, Collaborative Environment For HLA Component-Based

Distributed Multiscale Simulations accepted by: W. Dubitzky et al “Large Scale Computing

Technologies for Complex System Applications”, Wiley&Sons.

[MUSE] S. Portegies Zwart, S. McMillan, at al. A Multiphysics and Multiscale Software

Environment for Modeling Astrophysical Systems, New Astronomy, volume 14, issue 4, year

2009, pp. 369 - 378

[SUTER] Suter JL, Anderson RL, Greenwell HC, et al. Recent advances in large-scale

atomistic and coarse-grained molecular dynamics simulation of clay minerals. Journal of

Materials Chemistry 2009; 19: 2482-2493.

MAPPER – 261507

D8.1-Architecture-Interfaces-CYF-v2.13.pdf Page 71 of 71

[THANG] Pham van Thang, Bastien Chopard, Laurent Lefvre, Diemer Anda Ondo, and

Eduardo Mendes. Study of the 1d lattice boltzmann shallow water equation and its coupling

to build a canal network. Journal of Computational Physics, 229(19):7373-7400, 2010.

[ZASADA] S. J. Zasada and P. V. Coveney, "Virtualizing Access to Scientific Applications

with the Application Hosting Environment", Computer Physics Communications,180, (12),

2513-2525, (2009), DOI: 10.1016/j.cpc.2009.06.008.

[ZASADA2] S. J. Zasada and P. V. Coveney, "From campus resources to federated

international grids: bridging the gap with the application hosting environment", Proceedings

of the 5th Grid Computing Environments Workshop, Article No.: 10, (2009), ISBN:978-1-

60558-887-2

