
 MAPPER - 261507 - FP7/2007-2013

Project acronym: MAPPER

Project full title: Multiscale Applications on European e-Infrastructures.

Grant agreement no.: 261507

D 8.2 First prototype with demonstration

Due-Date: 30 September

Delivery: 28 September

Lead Partner: Cyfronet

Dissemination Level: Public

Status: Final

Approved: QAB

Version: 1.7

MAPPER – 261507

D8.2 First prototype with demonstration Page 2 of 28

DOCUMENT INFO

Data and version number Author Comments

25.07.2011 v0.1 Katarzyna Rycerz Plan of the document

05.09.2011 v0.2 Katarzyna Rycerz

General architecture
chapter, draft of executive
summary and skeleton
chapters

06.09.2011 v0.3 Tomasz Gubala
Added parts concerning
MaMe, result management
and browsing

07.09.2011 v0.4 Katarzyna Rycerz

Improved draft concerning
skeleton, added chapter
about measurement of tools
efficiency

07.09.2011 v0.5 Joris Borgdorff Added parts about jMML

07.09.2011 v0.6 Alexandru Mizeranschi SBML toolbox chapter

08.09.2011 v0.7 Katarzyna Rycerz
Executive summary and
Conclusions Chapter

09.09.2011 v0.8 Joris Borgdorff
some corrections to jMML
part

09.09.2011 v0.9 Eryk Ciepiela

Iinput to sections related to
Experiment Workbench,
Experiment Execution
Engine, MML to
Experiment, QCG
Intergration

09.09.2011 v1.0 Katarzyna Rycerz
Corrections to general
architecture chapter

09.09.2011 v1.1 Grzegorz Dyk
First version of section
about provenance added

13.09.2011 v1.2 Daniel Harezlak
Added sections about MAD,
jMML and CxA

13.09.2011 v1.3 Katarzyna Rycerz formatting

15.09.2011 v1.4 Katarzyna Rycerz
Modifications to the
document structure

16.09.2011 v1.5
Bartosz Bosak, Katarzyna
Rycerz

Small changes to section
related to QCG

23.09.2011 v1.6 Katarzyna Rycerz
Corrections according to
internal review 1

28.09.2011 v1.7 Katarzyna Rycerz
Corrections according to
internal review 2

MAPPER – 261507

D8.2 First prototype with demonstration Page 3 of 28

MAPPER – 261507

D8.2 First prototype with demonstration Page 4 of 28

TABLE OF CONTENTS

1 Executive summary ... 6

2 Contributors ... 6

3 Glossary of terms... 7

4 General architecture of the first prototype. ... 9

4.1 First prototype architecture in the context of the tools design. 9

4.2 Altered execution model of applications and resources ...10

5 Tools - description of the first prototype ..10

5.1 User Interfaces and visual tools ..10

5.1.1 jMML Library ...10

5.1.2 Multiscale Application Designer (MAD)..11

5.1.3 GridSpace Experiment Workbench ...14

5.1.4 MAPPER Application Result Browsing ..14

5.2 Programming tools ..15

5.2.1 MaMe: MAPPER Memory ...15

5.2.2 The SBML toolbox ...18

5.3 Execution Tools ..20

5.3.1 Execution Engine First Prototype ..20

5.3.2 Interpreters Registry First Prototype ..20

5.3.3 Connection with QCG Client First Prototype ..21

5.3.4 Browsing Results of MAPPER Applications ...21

5.4 MProv - MAPPER Provenance data collector and storage22

5.4.1 Functionality ..22

5.4.2 Architecture overview ..22

5.4.3 Provenance data acquisition ...23

5.4.4 Provenance data storage ..23

5.4.5 Data publishing and querying ..24

6 Multiscale Application Skeleton Prototype ..24

6.1 MASK Functionality ...24

6.2 Sample application ..24

7 Prototype availability ...25

MAD ...25

GridSpace Experiment Tools ..26

MAPPER – 261507

D8.2 First prototype with demonstration Page 5 of 28

MaMe ...26

SBML toolbox ...26

MASK and the test application ..27

8 Evaluation of efficiency of WP8 tools ..27

9 Conclusions ..27

10 References ...27

LIST OF FIGURES

Fig. 1 Architecture of the first prototype of the programming and execution tools in the context

of the full design presented in D8.1. .. 9

Fig. 2 A snapshot of the current implementation of MAD showing sample multiscale application

composed from single scale submodules. .. 12

Fig. 3 CxA configuration template filled in by MAD according to the gMML contents. 13

Fig. 4 A sample of MaMe application elements list with two scale modules 15

Fig. 5 MaMe also store information on current implementations of application elements - here,

a mapper definition with a single implementation. .. 16

Fig. 6 A simple MaMe web form for altering application element description by adding a new

port ... 16

Fig. 7 While the codebase of MAPPER applications grows, the administrator may use MaMe

forms like this one to add new implementations of registered application modules. 16

Fig. 8 All the REST operations, that MaMe exposes as its API for other MAPPER tools in use for

interactions, are described online. Please use the API Help button on the MaMe main

menu to see documentation on each of the API operations, similar to the one in the

picture. ... 17

Fig. 9 The MaMe xMML upload form for extraction of valuable information on models, mappers

and filters constituting a multiscale application. ... 18

Fig. 10 Flow of information in a SBML toolbox .. 18

Fig. 11 MProv system architecture showing interactions between GridSpace Execution Engine

and MProv tool. ... 22

Fig. 12 An example of event description in MProv .. 23

Fig. 13 Ant and elephant test application generated by MASK .. 25

MAPPER – 261507

D8.2 First prototype with demonstration Page 6 of 28

1 Executive summary

This document describes the functionalities and possible access to demonstrations for the
multiscale programming and execution tools in the MAPPER project. More specifically, D8.2
is the prototype of the tools facilitating creation and execution of multiscale applications with
structure described in Multiscale Modelling Language.

The presented tools support composition of multiscale applications from existing single scale
submodules installed on e-infrastructures. After being composed, such applications are
executed.

The first prototype contains most important programming and execution tools which
includes: the application composition tool called Multiscale Application Designer (MAD),
Registry for application modules description implemented as MAPPER Memory (MaMe),
tools supporting high level stage of execution: GridSpace (GS) Experiment Workbench (EW)
and GS Execution Engine. The execution tools interact with underlying interoperability layer
to access the infrastructures. The full design of the tools was presented in D 8.1. As for the
first prototype actual applications are manually programmed, the tools have been initially
tested using skeleton application. We present architecture of the current implementation,
detailed description of the tools, their current functionality, links to prototypes, code
repositories and/or demonstration videos.

The document is organized as follows: In Section 4 we briefly describe architecture of the
prototype and its relation to design in D 8.1. The detailed information about each tool
prototype can be found in Section 5. The use case on the sample skeleton application used
for tools' tests is described in Section 6. Section 7 we list links to prototypes, code
repositories and/or demonstration videos. Section 8 outlines preliminary evaluation of
efficiency of WP8 tools. We conclude in Section 9. The status of the actual MAPPER
applications and their preliminary usage of the tools can be found in D 7.1.

2 Contributors
Below we list the institutions and names of the contributors. Their exact role in this
deliverable is depicted in the document info table at the beginning of the document.

Cyfronet: M. Bubak, E. Ciepiela, G. Dyk, T. Gubała, D. Harężlak, K. Rycerz
PSNC: B. Bosak, M. Mamoński ,T. Piontek
UvA: Joris Borgdorff
UU: Alexandru Mizeranschi
UCL: Stefan Zasada
UNIGE: Bastien Chopard

MAPPER – 261507

D8.2 First prototype with demonstration Page 7 of 28

3 Glossary of terms

In this document we will use terminology listed below. Additional glossary of terminology can
be also found in Section 3 of D 8.1.

Application Hosting Environment (AHE): a framework supporting running applications on
Grid infrastructures hosting Globus, UNICORE or GridSAM middleware.

Car-Parrinello Molecular Dynamics (CPMD): package containing a parallelized plane wave
/ pseudopotential implementation of Density Functional Theory, particularly designed for ab-
initio molecular dynamics.

CxA: Ruby-based file format that describes a MUSCLE application: (1) modules parameters
(2) couplings between modules.

Executor: a common entity for hosts, clusters, grid brokers etc. It's anything that is capable
of running software which is already installed on it (represented as Interpreters).

Experiment host: host where GridSpace experiment is executed

Filter: in MML terminology one-to-one type of connection between submodels

gMML: see MML

jMML : java library supporting MML

GridSpace experiment: set of snippets in various script languages stored in XML file. This
XML file can be stored in Repository.

Interpreter: a software package accessible from any script language available on any
infrastructure accessible by MAPPER community. An example of interpreter can be
MUSCLE(See D 8.1) or LAMMPS1 tools. We assume that the software is installed in WP4.

JobProfile: see QCG JobProfile

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS): package
supporting classical molecular dynamics simulations.

Loosely coupled and tightly coupled: a collection of submodels instances is loosely
coupled if there is no cycle between them in the coupling topology, and tightly coupled
otherwise.

Mapper: in MML terminology mapper is one-to-many type of connection between single
scale submodels. Note the difference between mappers and the MAPPER project.

MAPPER memory (MaMe): semantics-aware persistence store for MAPPER metadata
based on xMML description

Multiscale Application Designer (MAD): MAPPER application composition tool

Metadata: data about data (e.g. link to actual file, but not file itself)

1
 http://lammps.sandia.gov/

MAPPER – 261507

D8.2 First prototype with demonstration Page 8 of 28

Multiscale model: the model of a multiscale process.

Multiscale Modelling Language (MML): the high level concept of the language that
describes single scale submodels and their connections. The connection can be realized by
mappers (one-to-many type of connection) or filters (one-to-one type of connection with data
filtering). It is a concept for modelers and has several representations. The one described in
this document are xMML and gMML:

 xMML: the XML representation of MML that contains all information about
application structure. The latest version of xMML specification can be found on
http://napoli.science.uva.nl/xmml/xmml.tar.gz.

 gMML - the graphical representation of MML that contains only part of
information about application structure, useful for modellers and application
developers.

Multiscale Coupling Library and Environment (MUSCLE): a communication library that
can be used to connect modules implementing single scale models into a multiscale
simulation. The structure of the application is described in CxA file.

Submodel (Single scale model): a model of a single scale process. In the context of a
multiscale model, a submodel.

Snippet: a piece of code in a script language.

Synchronization points: points during execution that one submodel instance will need to
synchronize with another (including itself), by requiring input.

System Biology Markup Language (SBML): XML-based language for representing
models. It's oriented towards describing systems where biological entities are involved in,
and modified by, processes that occur over time.

QosCosGrid (QCG): a resource and task management system aiming to provide
supercomputer-like performance and structure to cross-cluster large-scale computations that
need guaranteed level of Quality of Service (QoS).

QCG JobProfile: XML-based language describing how to execute an application using QCG
middleware.

Repository: place where multiscale applications' description files are stored and managed
(e.g. xMML files)

Registry: place where information (metadata) about some entities (in our case simulation
modules) are registered (but modules themselves are not stored!)

Task graph: an acyclic directed graph representation of the submodel instances and their
synchronization points as they unfold over time. It may include each of the operators of the
SEL as nodes.

User Interface machine (UI): machine accessible directly (via ssh) by a user from which he
can access other (Grid, PBS) resources

xMML: see MML

MAPPER – 261507

D8.2 First prototype with demonstration Page 9 of 28

4 General architecture of the first prototype.

4.1 First prototype architecture in the context of the tools design.

The general architecture of the first prototype is shown in the Fig 1, which is enhanced
version of the architecture presented in D8.1 according to evolving user requirements. The
first prototype contains most important multiscale programming and execution tools. As
can be seen in the figure most of the modules are already present in the implementation of
the first prototype. This includes: Multiscale Application Designer (MAD), Modules Registry
implemented as MAPPER Memory (MaMe), GridSpace (GS) Experiment Workbench (EW)
and GS Execution Engine. We have also introduced a new module (GS Interpreters
Registry) that turned out to be important for the overall tools functionality as described in
Subsection 4.2. There are also some less urgent modules that still exist in a design phase
and are shown in the figure as dashed line boxes. We will subsequently improve the
presented prototype by implementing also these modules according to evolving user
requirements.

User Interfaces and visual tools, task 8.1

Software packages
created in WP7, adapted by WP4, integrated by WP5 and installed by WP6

on e-infrastructures

Multiscale Application Designer

GridSpace Experiment
Workbench

GridSpace
Execution

Engine
Task 8.3

Provenance
Task 8.4

Result and
file browsing

XMML
Repository

Task 8.2

Mapper Memory
(MaMe)
Task 8.2

Direct Experiment hosts
(UIs)

QCG-Broker
(Interoerability layer

WP4)

GridSpace
Interpreters Registry

Task 8.3

Module
implemented

in the first

prototype

Module in the
design phase

Legend:

AHE
(Interoperability

layer WP4)

MaMe Web
Interface

Data flow
Current

Planned

Result Management
Task 8.3

Provenance
Interface

REST REST

REST

Currently:GSExperiment file

QCG-client API and GridFTP

ssh

currently:ssh

Java API

Fig. 1 Architecture of the first prototype of the programming and execution tools in the context

of the full design presented in D8.1.

In Fig. 1 we also depicted protocols and interfaces between the tools. As the interoperability
layer services (QCG-Broker, AHE) uses standardized protocols (GridFTP) for data flow the
GS Execution Engine use them to stage-in and stage-out input and output files.
We assume that interoperability layer services are required to support gridftp protocol as they
are intended to support european e-infractructures. The data flow itself will be managed by
GridSpace using gridftp clients and - where possible - third party file transfer.

MAPPER – 261507

D8.2 First prototype with demonstration Page 10 of 28

In the next chapters we present the detailed description of the tools and contain architecture
of the current implementation, its current functionality, possible changes in comparision to
the design in D8.1, links to the prototype, code repository and/or demo film. The detailed plan
of vertical integration of all MAPPER software is described in D 5.2.

4.2 Altered execution model of applications and resources

Taking into account application requirements described in D 4.1 from the execution tools
perspective we have categorized modules of MAPPER applications in the following groups:

 script snippets (pieces of code) of common script languages (e.g. Perl, Ruby, Python,
Bash) – e.g. Nanotechnology application [GROEN]),

 script snippets for general-purpose toolkits (e.g. LAMMPS or CPMD for
Nanotechnology application,

 script snippets (e.g. CxA connection file in ruby for MUSCLE applications like ISR
[CAIAZZO] or Canals [THANG]) for connecting/executing compiled computational
kernels of actual application,

 Additional codes and libraries (e.g. computational kernels in Fortran in Fusion
applications etc.)

We have introduced the execution model of MAPPER applications that consists of snippets
that are associated with the interpreters. In our model Interpreter is a software package
accessible from a script language, that is available on the infrastructure no matter where it's
installed. It describes the software itself: what input it requires, what parameters it uses etc.
An example of interpreter can be MUSCLE or LAMMPS tools.

On the other hand we needed abstraction level above a range of ways the computational
facilities are accessible. The tools should support ssh-accessible clusters, QCG-Broker,
AHE-accessible resources and other not known in advance within or beyond the scope
MAPPER project. Therefore, in our model, we introduced executor entity i.e. a common
entity for hosts, clusters, grid brokers etc. capable of running software which is already
installed on it (represented as Interpreters). The execution model assures that execution
format of application (called GridSpace experiment) can be considered as portable in terms
of infrastructure to be used. The Interpreter Registry was introduced to store bindings
between interpreters and executors (see Subsection 5.3.2).

5 Tools - description of the first prototype

5.1 User Interfaces and visual tools

5.1.1 jMML Library

The jMML library is a Java library that handles MML [BORGDORFF] described in detail in
Subsection 4.2 of D8.1. (see also Section 3). Specifically, jMML it can read and write xMML2
(textual representation of MML) and it can generate gMML (graphical representation of
MML). The relationship between gMML and xMML is explained in detail in Subsection 8.1.1.3
of D8.1. (see also Glossary of terms in D8.1). jMML is a Maven3 project with three modules:

2
 http://napoli.science.uva.nl/xmml/xmml.tar.gz

3
 http://maven.apache.org/

http://napoli.science.uva.nl/xmml/xmml.tar.gz

MAPPER – 261507

D8.2 First prototype with demonstration Page 11 of 28

 A utilities module jmml-util that contains data structures such as lists and graphs, and
SI unit handlers.

 A specification module jmml-specification that converts from and to xMML using the
Java Architecture for XML Binding (JAXB). It has custom classes that facilitate easy
manipulation of xMML.

 An API jmml-api to create a coupling topology, task graph or scale separation map
from a xMML specification. It can also output a task graph or gMML to pdf.

The main part of the jmml-specification is generated from the W3C XML Schema of xMML by
the xjc tool of JAXB. This means that when a new version of xMML is released, jMML can
easily adapt. It also means that it can always read, modify and write a certain version of
xMML. On top of these generated sources, additional verification of couplings and datatypes
is performed. This happens at any time that the xMML specification is changed in jMML.
Once the code is generated, xMML is no longer validated using the XML Schema when an
xMML file is read. Instead, xMML should be validated before it is passed to the jmml-
specification module.

The jmml-api module can analyze the xMML specification in several ways. First, it can detect
which submodels need to be started initially for the model to calculate correctly by
constructing the coupling topology. Second it, can output the coupling topology as a
Graphviz file, which can then be converted to PDF containing MML by the dot tool of
Graphviz. It can also generate the task graph of a specification, assuming that the time
scales of all submodels are regular. If a model will run into a deadlock, given the xMML
specification, this will be detected and reported on the command line and, if converted to
PDF, in the resulting PDF file. The task graph algorithm is memory-efficient and a task graph
can be manipulated after it is generated. Graphviz and PDF viewers, on the other hand, can
not always handle graphs that are as large as a full task graph. Finally, it can detect the
scales of the different submodels, and whether they are separated or not, and make a scale
separation map. The map can be viewed as a window or converted to SVG using the Batik
SVG converter.

The jmml-api includes a command-line tool that can generate a coupling topology, task
graph, or scale separation map from a given xMML file. The only prerequisite is that such an
xMML must have all XInclude files processed in advance.

Anyone that wants to manipulate xMML can import the first two models into their Java
project. If they want to generate a task graph or coupling topology the third module can be
used.

5.1.2 Multiscale Application Designer (MAD)

The current implementation of MAD provides a functional MAPPER application composition

tool (see D8.1 for detail design). A snapshot is presented in

Fig. 2

MAPPER – 261507

D8.2 First prototype with demonstration Page 12 of 28

Fig. 2 A snapshot of the current implementation of MAD showing sample multiscale application
composed from single scale submodules.

In the left column a list of graphical representations of submodels and mappers (see MML
terminology) is available. The items can be dragged onto the workspace are in the middle of
the view. There, application composition can be performed by connecting the ports to
produce the final arrangement. The menu on the right contains a list of actions which can be
called by the user. These include saving the graph in an internal XML format, exporting to
GS experiment which can be executed inside GS experiment workbench, exporting to
extended xMML format and finally loading a graph from the extended xMML file. As current
multiscale applications are complicated more in terms of submodules connections then their
number, the current version does not support advanced zooming features. This, however, is
subject to change according to actual applications requirements.

Submodel and mapper items are generated according to the contents of the MaMe registry
which is one of the external dependencies of MAD. The xMML repository support is still
under implementation and will allow users to share their applications.

Usage of jMML
The jMML library provides MAD with basic data structures of the xMML notation, as well as
with auxiliary algorithms to detect tightly-coupled sections of application described by xMML
(see also Subsection 8.1.2 and Fig. 14 of D8.1). The detection is used during the generation
of GS experiments (see below) to produce one snippet per one tightly-coupled section. As
tightly coupled application are MUSCLE-based, the snipet is in CxA file format.

The common code base ensured by using the jMML library speeds up the development and
keeps the tools synchronised. Staying up to date with the jMML development is carried out
by using Maven dependencies. For external use XML Schema can be used.

Transforming MML to GS Experiment

The first prototype of the MAD tool supports exporting MML diagrams both to xMML format
(for describing high level application structure) and GridSpace experiment format (for
execution in GS Experiment Workbench as described in Subsection 5.1.3). In particular, the
experiment can contain CxA snippets for MUSCLE application that can be executed on
various infrastructures (e.g. QCG). This is described in detail later in this section.

Importantly, prior to export multiscale application as GridSpace experiment, the MAD tool
needs supplementary information from the Interpreters Registry described in Subsection
5.3.2. The registry tells what software can realize submodels and which infrastructure

MAPPER – 261507

D8.2 First prototype with demonstration Page 13 of 28

elements can run such software. This information is intentionally not included in MML
description in order to keep it independent on software that realizes submodules. MAD tool
inquires MaMe (see Subsection 5.2.1.1) for interpreters that realize given sub-models, and
then inquires the Interpreters Registry about what parameters and codes are required by the
interpreters. Therefore, MAD user can choose the interpreter that suits his or her the best
and provide all parameters and codes it requires. That combo of information is then enough
to construct GridSpace experiment.

Despite experiment designates interpreters that are to be used to realize submodes it is still
ambiguous what infrastructure or sites are to be used to execute the experiment. The
selection of infrastructure to be used is left for the multiscale application execution step that
is carried out though the GridSpace Experiment Workbench tool. As a result, business-
logically the same experiment can be run in many different ways by harnessing different
infrastructures to run it.

Support for QCG Job Profile
In D 8.1 we have described possible ways of transformation between xMML to QCG
JobProfile languages. According to GS model of computational resources (see Subsection
4.2.), the QCG is considered as one of the executors and the transformation is performed on
the level of Execution Tools (see Subsection 5.3.3).

Support for CxA snippets
During the process of building the final GS experiment from the gMML representation CxA
configuration comprises a single code snippet. The snippet is generated by filling in a
common template with appropriate sections which include classpath, kernels, parameters
and connections. Data needed to compose individual sections is retrieved from the MaMe
registry. The current template of the CxA configuration is given below in Fig. 3

configuration file for a MUSCLE CxA
abort "this is a configuration file for to be used with the
MUSCLE bootstrap utility" if __FILE__ == $0
add build for this cxa to system paths (i.e. CLASSPATH)
m = Muscle.LAST
m.add_classpath "${classpath}"
m.add_libpath "/user/lib"
cxa configuration section
cxa = Cxa.LAST
cxa.env["cxa_path"] = File.dirname(__FILE__)
declare kernels
${kernels}
parameters
${parameters}
configure connection scheme
cs = cxa.cs
${connections}

Fig. 3 CxA configuration template filled in by MAD according to the gMML contents.

The CxA classpath section holds the locations of .jar (Java Archive) files containing
implementations of the relevant MUSCLE kernels. The locations are specific for particual
Mapper submodules and are provided during the process of registration in the MaMe
registry.

The kernels section defines a list of kernels taking part in the computation. Each submodule
and mapper from the gMML description is assigned a kernel. The order in which the kernels
are defined is irrelevant in the CxA configuration. Each kernel can be configured with an

MAPPER – 261507

D8.2 First prototype with demonstration Page 14 of 28

independent list of parameters in the parameters section. MAD takes paramater names and
values from the MaMe registry.

Tha last CxA configuration section defines connections between kernels. It is built according
to the graphical representation of the application. The first prototype of MAD does not make
any connection validation.

5.1.3 GridSpace Experiment Workbench

The first prototype the GridSpace Experiment Workbench offers a set of additional features
that adopt it to the MAPPER Framework.

First, GridSpace was adapted to a new execution model presented in Subsection 4.2
consisting of interpreters (independent on infrastructure), executors (types of infrastructure).
The additional notion of Executor Descriptor was introduced in order to supplement the
experiment with instructions needed on the execution phase about selected executors to
handle particular snippets. Executors are implemented as a GridSpace plug-ins that handle
communications with computational facilities like the ones mentioned above. For the first
prototype we support SSH Executor and QCG Executor. Consequently, the experiment itself
became a portable format in terms of being more high-level, as the information about what
infrastructure to execute it are provided separately on execution stage in the Execution
Descriptor data structure through the user interface of Experiment Workbench.

Secondly, the first prototype of Experiment Workbench supports simultaneous sessions with
more than one executor. It means that users can log in to multiple executors, manage files
from different sites and the same time, run experiments that involve many executors.

The current status of Experiment Workbench allows for creation of experiments from scratch
and running it over the computational resources of MAPPER. Moreover it is prepared to open
experiments previously exported from MAD tool.

5.1.4 MAPPER Application Result Browsing

Subsection 8.1.2.3 of D8.1 describes one of the extensions to the GridSpace Experiment
Workbench - the remote file browser widget. The widget is planned to be further extended to
suit the needs of MAPPER user.

The first extension to the file browsing capability, which was introduced up to date, is the
ability to browse files in a cross-site manner. This is especially helpful for user of multiscale
applications, whose elements are bound to run on different machines and clusters. That
means, the input files, the intermediary and the final results are usually stored on different file
systems within different computing installations (even in different cities or countries).

The current implementation of the file browsing allows the user, who has access rights to the
respective computing elements, to access all these resources and be able to switch the file
browser view from one machine to another. This capability is connected with the general
implementation of multi-machine login feature of the GridSpace. As mentioned in Subsection
8.1.2.3 of D8.1, the widget will also be extended in the future to accommodate browsing
results from the result store along with their provenance information, if available.

MAPPER – 261507

D8.2 First prototype with demonstration Page 15 of 28

5.2 Programming tools

5.2.1 MaMe: MAPPER Memory

MAPPER Memory (MaMe) main responsibility is to provide rich, semantics-aware
persistence store for other components to record information. The MaMe registry is meant to
deliver its functionality based on a well-defined domain model which includes all important
elements of MAPPER metadata defined in MML: scale modules, mappers and filters,
together with their ports, implementations and other constituting elements and attributes.
Thanks to MaMe, other MAPPER tools may store, publish and share common registry of
such elements throughout the entire Project and its Consortium.
Currently MaMe is in its first, early prototype, and provides most of the functionality of
registry for modules metadata (cf. Subsection 8.2.2 in D8.1). It also provides the initial part of
the functionality of xMML description repository (cf. Subsection 8.2.1 in D8.1). The following
subsections give more details on the current state of this prototype.

5.2.1.1 Registry of Modules Metadata

The primary purpose of the module metadata registry is to persistently store and publish
descriptions of scale models, mappers and filters developed for MAPPER applications. To
deliver such functionality, MaMe employs three-layer architecture, with persistent database,
semantic domain model and external user and API interfaces, as was planned and described
in Subsection 8.2.2.3 in D8.1.
The prototype currently provides a set of possibilities of interaction:

Browsing registered elements. The user is able to see all the registered scale models,
mappers and filters as the basic building blocks for any MAPPER multiscale application. The
defined ports and implementations of the elements are also presented. See Fig. 4 for
example of the scale modules presented in MaMe and Fig. 5 to see a mapper with a defined
implementation.

Fig. 4 A sample of MaMe application elements list with two scale modules

http://www.mapper-project.eu/web/guest/wiki/-/wiki/Main/D8.1
http://www.mapper-project.eu/web/guest/wiki/-/wiki/Main/D8.1
http://www.mapper-project.eu/web/guest/wiki/-/wiki/Main/D8.1

MAPPER – 261507

D8.2 First prototype with demonstration Page 16 of 28

Fig. 5 MaMe also store information on current implementations of application elements - here,
a mapper definition with a single implementation.

Registering new elements. MaMe provides a set of web forms to define new elements of
multiscale applications - scale models, filters and mappers - along with their attributes and
subelements (e.g. ports or scales).

Updating existing elements. The users are able to delete whole or part of any element
definition and they are able to alter the description (metadata) of such elements. Fig. 6 and
Fig. 7 present two examples of web forms provided for easy and effective update and
creation of registered metadata.

Fig. 6 A simple MaMe web form for altering
application element description by adding a
new port

Fig. 7 While the codebase of MAPPER

applications grows, the administrator may
use MaMe forms like this one to add new
implementations of registered application

modules.

Apart from its persistence capabilities and its user-oriented web interface for metadata
browsing and maintenance, MaMe also provides API interface for other MAPPER tools to
connect with the registry and to publish or retrieve stored information. Currently, MaMe API
provides the following remote operations (all based on the REST principles):

 /models-list: lists all the registered models, mappers and filters with their full
descriptions

 /add_base/Submodel: registers a new scale model

 /add_base/Mapper: registers a new mapper

 /add_base/Filter: registers a new filter

 /add_implementation/(Mapper|Submodel|Filter)/'id'/: adds an implementation of a
given type of element (either scale model, mapper of filter).

MAPPER – 261507

D8.2 First prototype with demonstration Page 17 of 28

Fig. 8 All the REST operations, that MaMe exposes as its API for other MAPPER tools in use for
interactions, are described online. Please use the API Help button on the MaMe main menu to

see documentation on each of the API operations, similar to the one in the picture.

The API is documented online so each mapper developer has access to it at anytime (see

Fig. 8 to see a sample of API description in MaMe). At the moment two other MAPPER tools

actively use MaMe API interface for sharing metadata:

 MASK skeleton generator stores information about elements of skeleton MAPPER
application obtained through code generation capability (see Section 6).

 MAD application design tool retrieves the available elements of multiscale
applications in order to provide the user all possibilities of building application
structure (see Subsection 5.1.2).

The current MaMe implementation supports almost all use cases described in Subsection
8.2.2.1 of D8.1 (Modules Registry). Of course, MaMe will evolve with time according to future
changes in xMML schema definition. Also, the API interface capabilities are expected to grow
since more tools may need to access MaMe in the future and more elaborated interaction
patterns may be involved.

Regarding the underlying metadata schema, the current prototype of MaMe module registry
is based on xMML 0.3.2 schema definition.

5.2.1.2 Repository of xMML Descriptions

Another component of MaMe registry that was recently developed concerns the repository of
xMML application descriptions. The main objective of this effort is to deliver the MAPPER
tool users a persistent and shareable storage for constructed multiscale application
descriptions in the form of xMML schema. As the development of the first MaMe prototype
was focused mainly on delivering the registry of modules metadata, the stage of
implementation of the xMML description repository is in its infancy.

Currently, as shown in Fig. 9, the user is able to upload her or his description in xMML XML

notation. Then, if the parsing process goes properly and the description conforms to the
latest xMML schema definition, MaMe will extract all the model, mapper and filter information
from the document and register them inside the internal database, so they are available for
browsing and updating in MaMe user interface and for building new application descriptions
in MAD.

http://www.mapper-project.eu/web/guest/wiki/-/wiki/Main/D8.1

MAPPER – 261507

D8.2 First prototype with demonstration Page 18 of 28

Fig. 9 The MaMe xMML upload form for extraction of valuable information on models, mappers

and filters constituting a multiscale application.

MaMe internal domain model is currently not aware of application structure and may only
store the building blocks, or elements, of such a structure. Further development will introduce
additional extensions of the model to cover for different relations and connections between
modules, mappers and filters. Thus, it will be possible to store the full structure of an
application inside MaMe and, furthermore, user tools like MAD will be able to offer
Consortium-wide save and load capabilities for created xMML descriptions.

5.2.2 The SBML toolbox

During the implementation of the systems biology application for MAPPER (which was
described in deliverables D4.1 and D7.1) we encountered the need for extra functionality that
tools such as COPASI4 [HOOPS] could not provide on their own. We decided to go one step
further from what was mentioned in deliverable D8.1 and build our own SBML toolbox, thus
ensuring that we can incorporate any existing tools that provide the functionality we need and
not rely only on COPASI.

SBML toolbox facilitates the conversion to and from SBML5 and several other important file
formats and tools used within the field of systems biology. SBML is becoming a widely-used
standard for storing biological models, with an existing online database6 storing validated
models written in this format. Also, a rather new standard which we decided to adopt is
SBRML7 [DADA]. It was developed recently in order to address the issue of storing
experimental and simulation data and meta-data regarding the way this data was produced

For our purposes, we have identified the necessary tools to enable the fo flow of information
as shown in Fig. 10.

Fig. 10 Flow of information in a SBML toolbox

For generating SBML files, the user has several choices among pre-existing tools in systems
biology. Tools such as the previously mentioned COPASI or CellDesigner8 [FUNANHASHI]
have been in continuous development for several years, reaching a suitable level of maturity.

4
 COPASI home page: http://www.copasi.org/

5
 The systems biology markup language: http://sbml.org

6
 The Biomodels online database: http://www.ebi.ac.uk/biomodels-main/

7
 The systems biology results markup language: http://www.comp-sys-bio.org/tiki-

index.php?page=SBRML

8
 CellDesigner home page: www.celldesigner.org/

MAPPER – 261507

D8.2 First prototype with demonstration Page 19 of 28

Both tools provide means to import and export SBML files, as well as additional features for
simulating biological systems. Also, both tools provide an easy to use graphical interface,
thus facilitating a user-friendly means of generating SBML files.

After generating the SBML files, we focus on a simple usage scenario: artificial data
generation and storage (specifically, an artificial time-series experiment or simulation of the
model represented in the SBML file). Although many existing simulation packages in systems
biology (including COPASI and CellDesigner) provide this feature, our aim was to provide a
simple toolset facilitating batch processing of SBML files, ready to be integrated in more
complex applications. The result was a series of Java classes which provide the functionality
we needed for our systems biology application.

To enable the data generation from the SBML file, the first aspect we need to investigate was
using an ODE solver to integrate the differential equations specifying the reaction kinetics in
the SBML file. For this, we chose the XPPAUT9 ODE solver (Ermentrout, 2002). To enable
this tool, however, we needed a way to generate an input file for XPPAUT from the initial
SBML file. SBML2XPP10 is a simple executable which can create .ODE files for XPPAUT
from SBML files. We have successfully integrated it within our toolbox and it was our initial
choice for an SBML converter while developing the systems biology application.

During the development, however, we encountered some optimization issues related to the
execution time of the SBML2XPP converter. A much faster alternative for us was to program
our own converter, by calling the routines that the libSBML11 library provides. We use the
Java version of the libSBML library to read from and write to SBML models and to construct
an input file for XPPAUT. XPPAUT outputs its results in a CSV (comma separated values)
file, which is then translated to SBRML by using a tool called ConsoleSBRML12.

We have created simple Java library for managing and orchestrating each of the previously
described tools. The functionality of our library includes:

 Using libSBML to create ODE files from SBML files containing a special pattern (we
made assumptions about the SBML file structure, based on the problem we were
investigating at the time).

 Creating and running a process of the SBML2Xpp tool for supporting any type of
SBML file.

 Creating and running a process of the XPPAUT tool.

 Analysing the output of XPPAUT

 Converting an SBRML file to a CSV file. The functionality can easily be extended to
provide the backwards conversion, as the ConsoleSBRML tool supports it.

9
 XPPAUT, a tool for solving stochastic, differential, and difference equations:

http://www.math.pitt.edu/~bard/xpp/xpp.html

10
 The SBML2XPP tool: http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoXPP-Aut.html

11
 The libSBML library: http://sbml.org/Software/libSBML

12
 The ConsoleSBRML tool: http://sbrml.sourceforge.net/SBRML/Welcome.html

MAPPER – 261507

D8.2 First prototype with demonstration Page 20 of 28

5.3 Execution Tools

5.3.1 Execution Engine First Prototype

Experiment Execution Engine is primarily a back-end for the Experiment Workbench
described in Subsection 5.1.3 that offers experiment execution capabilities. It uses executors
in order to support computing infrastructures involved in MAPPER.

Execution Engine incorporates the Interpreters Registry which keeps data about available
interpreters and executors in the MAPPER Framework and binding between them telling
which executors support which interpreters. This information is needed in order to dispatch
execution of snippets written in some interpreter to supporting executor.

On the other hand the same Interpreters Registry is used by MAD tool though the REST API.
As explained in previous sections MAD needs this information to construct complete
GridSpace experiment.

Therefore, Experiment Execution Engine along with Interpreters Registry backs Experiment
Workbench and MAD tool.

In the first prototype Experiment Execution Engine support new features of Experiment
Workbench and requirements imposed by MAD tool as follows:

 Support for new model of resources (including interpreters and executors) that allows
for portable experiments, and late assignment of executors to execute the
experiment.

 Support for multi-executor execution of experiment. Depending on user demands
snippets can be dispatch to execute on different executors.

 As a consequence of using different executors within the experiment run we support
mechanism for staging input and output files between executors.

 Interpreters Registry made remotely accessible via REST API.

 Implementation of executors including SSH Executor and QCG Executor.

5.3.2 Interpreters Registry First Prototype

Interpreters Registry is delivered as a part of Experiment Execution Engine, but being
functionally independent and used by other elements of MAPPER Framework (namely MAD
tool) it is considered as a stand-alone functional component of the architecture.

It's main role is to keep information about the resources available in the infrastructure made
available to the MAPPER community including:

 Interpreters and Executors – see Subsection 4.2

 Binding between Interpreters and Executors - telling which Interpreters are available
on which Executors. Includes additional data about how to access particular
Interpreter on particular Executor.

Interpreters Registry exposes remote REST API for the use of MAD tool, which needs
description of Interpreters in prior to export complete GridSpace experiment.

MAPPER – 261507

D8.2 First prototype with demonstration Page 21 of 28

5.3.3 Connection with QCG Client First Prototype

As explained earlier, the support for computing infrastructures is realized through dedicated
executors. Technically it means that GridSpace provides a dedicated implementation of the
Executor interface that is a client for QCG-Broker. In the first prototype we provide such an
Executor that is able to construct a JobProfile document that corresponds to the GridSpace
experiment snippet and takes care of creation and staging of all the files involved including
main script, input and output files. Executor for QCG-Broker is implemented as
cyfronet.gs2.grms-executor module, which realized the contact specified in
cyfronet.gs2.executor module's interfaces.

The executor given with a snippet to execute performs the following steps:

 The Executor checks all the input files required by the snippet and put corresponding
input entries in the QCG Job Profile document. If the input file is stored in location
that doesn't support GridFTP protocol the files are staged on dedicated GridFTP
Server.

 Executor checks all the output files expected to be produced by the snippet and put
corresponding input entries in the QCG Job Profile document. The output files are
stored on the site of computation.

 The code of the snippet is copied to the main script file, which is also staged in the
dedicated GridFTP Server, and the corresponding main script entry is put in the QCG
Job Profile document.

 The JobProfile is sent to the QCG-Broker.

 QCG-Broker is periodically inquired for the status of the job.

 After the job is finished the location of produced files is stored for further use in case
the subsequent snippets use them as input files.

 The input files and main script files previously staged-in on dedicated GridFTP server
are deleted. It's reasonable as inputs are stored in their original location, and main
script is kept in the experiment as code of the snippet.

More information about integration with QCG can be found in D 5.2.

5.3.4 Browsing Results of MAPPER Applications

The multiscale application outputs and results management, according to its design in
Subsection 8.3.2 of D8.1, has two counterparts. The first one, storing and retrieving files on
remote computing machines, is already realized through the GridSpace file browsing tool and
its capability of performing file transfers to and from the target execution host with the ssh
protocol.

The second part of the result management functionality, is related to storing metadata on
computation outputs not accessible directly on computing hosts file systems. In such a case,
the persistence layer of MaMe registry will be used to store relevant description of the output
along with important information on its whereabouts. Then, the GridSpace file browsing
widget will be extended to accommodate such an information. Also, the provenance
component of MAPPER toolbox will be able to attach more provenance-related metadata to
the results, if available and needed.

The first step to deliver this functionality was performed in the implementation of the first
MaMe prototype. This assumed development and deployment of the common persistence
layer (see Subsection 8.2.1.3 in D8.1 for details) for such metadata. Further work will consist
of defining proper domain data model to describe the needed information and extending the
REST API of MaMe to make the result metadata transfer there and back possible.

MAPPER – 261507

D8.2 First prototype with demonstration Page 22 of 28

5.4 MProv - MAPPER Provenance data collector and storage

5.4.1 Functionality

The main responsibility of MProv tool is collecting, storing and publishing provenance
information about the application execution process. This tool is still under development.
Target functionality include:

 tracking multiscale application execution within the GridSpace. MProv communicates
with GS and detects execution of each snippet to get its input, output, snippet name,
experiment name, execution host etc. Development status: advanced

 storing gathered provenance information. This includes metadata (who did what,
where, how was asset generated) and asset snapshots (called artifacts). Each asset
version is kept and can be retrieved to rerun experiments with old arguments.
Development status: to be deployed - individual components are third party, free
software; more details in further sections

 providing a RDF data browser that enables user to input SPARQL query and search
for particular provenance entries and relationships. Development status: finished.

5.4.2 Architecture overview

Fig. 11 MProv system architecture showing interactions between
GridSpace Execution Engine and MProv tool.

MProv architecture is shown in Fig. 11 in the context of cooperation with GridSpace
execution engine described in Subsection 5.3.1. The Event Collector exposes a REST
interface that accepts provenance events sent from GS2. Information about these events is
stored in RDF database. The content of the database is presented to the user by Quattro - a
web application for browsing RDF data.

A separate host is responsible for storing file snapshots that take part in application
execution. Files kept in this repository can be accessed directly with HTTP URLs allowing the
user to get them directly from web browser running Quattro.

MAPPER – 261507

D8.2 First prototype with demonstration Page 23 of 28

5.4.3 Provenance data acquisition

MProv's Event Collector is a REST-based service that accepts provenance events and
stores them in RDF database. The events are specified in MProv's event format (MEF) as
triples containing description of action, entity that invoked that action (named who) and the
subject of that action (named what). MEF is based on the concept taken from the Open
Provenance Model Vocabulary (OPMV)13 ontology: agent, process and artifact (see the
specification for details). Examples include:

 who: process, artifact, supervisor

 what: activity target. May be a file, other process, variable defining a state etc.

 action: create (an artifact), start, stop (a process), updateParameter, read/use (a file,
input, parameter), etc.

Two additional elements, when and cause are optional. The former specifies time at which
event occurred (now by default) while the latter defined the cause of the action (event that
triggered it).

An example of MEF event written in XML format is shown in

<event>
 <who type="process" name="snippetA"
/>
 <what type="file" name="output.txt" />
 <action type="create" />
 <cause description="backup store" />
 <when time="2011-09-06 18:04" />
</event>

Fig. 12 An example of event description in MProv

MEF will be mapped to various serialization formats: XML, JSON, ProtoBuf. Currently only
XML is supported.

5.4.4 Provenance data storage

There are two types of provenance data gathered by MProv: metadata (relationships
between entities - result of events received in MEF format) and snapshots of files created by
experiment execution.

The metadata is kept in store of triples (triplestore). We want to use 4store14 database as it is
efficient and scalable. The triplestore will be accessed by the data collector using well
defined Sesame framework API. Such abstraction facilitates access to the database using
Java and makes it easier to replace the database backend (for example with native
Sesame). We've already managed to make 4store work together with Sesame. We also
managed to use the aforementioned OPMV ontology with slight modifications and extensions
for storing provenance relationships.

File snapshots will be stored in a file versioning system. We want to use SVN as it works
considerably well with large text and binary files. Additionally, host containing SVN server will
also have a GridFTP server to enable uploading files from experiments run on e-

13
 http://open-biomed.sourceforge.net/opmv/ns.html

14
 http://4store.org/

MAPPER – 261507

D8.2 First prototype with demonstration Page 24 of 28

infrastructures. The files will be uploaded to the file server directly from experiment execution
host. Both input and output files will be sent.

5.4.5 Data publishing and querying

MProv will expose a user interface for querying and browsing provenance data in RDF
format. This tool, called Quatro, is already implemented and allows user to graphically
compose a query for RDF data and view results using standard web browser.

6 Multiscale Application Skeleton Prototype

6.1 MASK Functionality

As described in D 8.1 we have developed additional auxiliary Multiscale Application Skeleton
(MASK) tool for creating multiscale applications skeletons - i.e. “empty” multiscale
applications with the same structure as real ones (number and type of modules, execution
type etc.) The motivation for MASK was described in D 8.1. The functionality of the skeleton
is placed between the structure description (MML) and the implementation of the application.
For the point of view of multiscale programming and execution tools, the created skeleton is
a running application. We decided to separate language used to create the skeleton from
language in which skeleton is executed (as in most skeleton frameworks [GONZALEZ]).
In the first prototype we have decided to use metaprogramming techniques of modern
scripting languages (Ruby) to design a Domain Specific Language (DSL) for writing
multiscale skeletons. Such DSL is independent on executing language (e.g. java, LAMMPS
script etc) and independent on communication (e.g. MUSCLE, plan files, etc.). MASK is
compatible with MML and the tools described in the previous section.
The current functionality includes:

 generating MUSCLE application from skeleton described in MASK DSL

 generating LAMMPS and Perl snippets from skeleton described in MASK DSL

 support for parametrising execution time, amount of exchanging data

 support for including legacy Java, LAMMPS and Perl code into the skeleton structure

6.2 Sample application

We have used MASK to create a simple multiscale application to test our tools. The
application was used as a sample use case during meeting of WP7 (applications) and WP8
(tools). The status of tools usage by the real MAPPER applications is described in D7.1.
The application consists of three scaleful single scale modules and two mapper modules
used for connections between scale ones. The application simulates very simple behaviour
of an ant and an elephant. The structure of the application is hybrid - the loosely coupled part
is followed by a tightly coupled one as shown in the
Fig. 13.

MAPPER – 261507

D8.2 First prototype with demonstration Page 25 of 28

1. AL lattice
constant

Calculation
(ang)

2. Mapper:
lattice constant ->

density

Ant (cm)Elephant
(m)

Mapper:
Elephant

2Ant

I ‘ve just

walked 1 m

Elephant just

walked 100cm

OK, I’ve caught up with you

by walking 100 cm

3.

Snippet 1
(LAMMPS)

Snippet 2
(Perl)

Snippet 3
(Muscle –

cxa.rb)

infrastructure

infrastructure

infrastructure

Fig. 13 Ant and elephant test application generated by MASK

The scenario of the application is as follows:
1. The module in nano scale calculates the lattice constant of aluminium atoms.
2. The scaleless mapper transforms the nano scale information into g/cm scale (density

of aluminium)
3. The module called Ant calculates the weight of aluminium it carries from density

obtained in the previous step (scale:centymeters)
4. The Ant walks after the Elephant in a tightly coupled manner:

a. The Elephant walks a 1 m/step and sends information back to the Ant
(scale:meters).

b. The Ant walks 100cm and confirms its progress to the Elephant.

7 Prototype availability

Below we present details concerning availability of prototypes of each tool.

7.1 jMML library

The latest version is accessible to project members and can be downloaded with git from
http://napoli.science.uva.nl/git/jmml.git.

7.2 MAD

MAD prototype is available on http://gs2.mapper-project.eu:18080/mad.
MAD development is supported by Maven software management tool. The source code is
available through an SVN repository under https://gforge.cyfronet.pl/svn/gs2-utils/ibuilder.
The project is divided into api and gwt modules. The first contains data model and high-level
application logic definitions and the second module implements the presentation layer. In this
case Google Web Toolkit15 together with drag-and-drop16 and SVG17 libraries were used to
implement this layer. Full and snapshot releases of the MAD tool are present in the Maven

15
 Google Web Toolkit, http://code.google.com/webtoolkit

16 Drag-and-Drop Library for Google-Web-Toolkit, http://code.google.com/p/gwt-dnd

17 Library to add SVG graphics to GWT applications, http://code.google.com/p/lib-gwt-svg

http://napoli.science.uva.nl/git/jmml.git
http://gs2.mapper-project.eu:18080/mad
http://code.google.com/webtoolkit

MAPPER – 261507

D8.2 First prototype with demonstration Page 26 of 28

repository at http://dev-gs.cyfronet.pl/mvnrepo. The artifacts can be used as Maven
dependencies in other projects or the final war (Web Application Archive) can be used to
deploy the final application.

7.3 GridSpace Experiment Tools

From the software engineering point of view, the architecture of GridSpace Experiment Tools
(i.e. GS Experiment Workbench, GS Execution Engine and GS Interpreter Registry) was
changed and decomposed into several separate Java projects:

 cyfronet.gs2.experiment - the classes and APIs enabling construction of experiments
and serializing it to XML format through JAXB technology, used both by Experiment
Workbench and MAD that exports the multiscale application description in the
experiment format.

 cyfronet.gs2.executor - the classes and APIs defining the contract between
GridSpace and computational facilities.

o cyfronet.gs2.ssh-executor - the implementation of the executor supporting
SSH-accessible sites

o cyfronet.gs2.grms-executor - the implementation of the executor supporting
QCG-Broker.

 cyfronet.gs2.core - the Execution Engine that carries out experiment execution
incorporated with Interpreter Registry

 cyfronet.gs2.ew - the web interface and server backend that incorporates all above-
listed modules.

 The cyfronet.gs2.ew module is the Experiment Workbench web user interface, while
the other ones are server-side libraries which we refer to later as Execution Engine.

The source code is kept in the SVN repositories with anonymous read-only access (login:
anonsvn, password: anonsvn):
https://gforge.cyfronet.pl/svn/gs2-utils/module-name
The binary bundles of these libraries are stored in Maven repository:
http://dev-gs.cyfronet.pl/mvnrepo/.
The production installation of GridSpace Experiment Workbench is already available at
https://gs2.mapper-project.eu.
The demonstration video on using Workbench with In-stent restenosis application can be
found on http://www.youtube.com/watch?v=3S9-kljyXIw

7.4 MaMe

The MaMe prototype is currently deployed at: http://gs2.mapper-project.eu:1234/
The source code of the prototype is available at:

 https://gforge.cyfronet.pl/svn/sint/trunk/mame (the MaMe tool)

 https://gforge.cyfronet.pl/svn/sint/trunk/sintmodel_mapper (the semantic MAPPER
data model).

The sources in this early prototype are not yet prepared for external developers to build and
deploy (as, e.g., another MaMe instance) on their own, yet they are open for read-only
access to any interested party. One only needs a SVN client software for project checkout.

7.5 SBML toolbox

The codes are available in the svn repository
https://apps.man.poznan.pl/svn/sbml-toolbox/GRNApplication/src/

https://gs2.mapper-project.eu/
http://gs2.mapper-project.eu:1234/
https://apps.man.poznan.pl/svn/sbml-toolbox/GRNApplication/src/

MAPPER – 261507

D8.2 First prototype with demonstration Page 27 of 28

7.6 MASK and the test application

The codes of the MASK prototype are freely available on site https://github.com/kzajac/mask.
An example of the DSL for the simple application can be found at
https://github.com/kzajac/MASK/tree/experimental/examples.
MASK was also deployed in the current version of the GridSpace Experiment Workbench
http://gs2.mapper-project.eu as one of the available interpreters. The demonstration videos
on how to use the skeletons are available at http://www.youtube.com/user/dicecyfronetpl

8 Evaluation of efficiency of WP8 tools
According to the Description of Work, the first implementation of the project does not require
us to couple applications using tools (only manually programmed version was promised),
however certain metrics still can be used:

 We have set up tracking systems for MaMe, MAD and the GS Experiment Workbench
tool, when we gather user requests. The number of requests can be viewed on
http://chomik.cyfronet.pl/trac/ proving that tools are tested by MAPPER application
developers

 There is a number of single-scale models already registered in models registry
(MaMe) see http://gs2.mapper-project.eu:1234 proving that tool started to be used

 The preliminary papers presenting results from applications using tools were
accepted on DMC2011 - Workshop on Distributed Multiscale Computing 2011 (held
in conjunction with E-science 2011 conference) for:

o ISR 3D with MUSCLE [BERNSDORF],
o ISR 3D and MML [BORDORFF],
o Nanotechnology application in MAPPER [GROEN],
o ISR 2D with GridSpace and MUSCLE [RYCERZ].

See also: http://www.computationalscience.nl/dmc2011/.

9 Conclusions
This deliverable presents the first prototype of multiscale programming and execution tools. It
shows the current status of implementation according to the design presented in D 8.1. The
functionality of the tools has been tested on a sample skeleton of multiscale applications
created basing on real applications structures. Preliminary evaluation of the tools efficiency
shows that the tools have already started to be used within the project by MAPPER
applications. The current application status can be found in D 7.1. In the next years of the
project the presented prototype will be enhanced to provide full functionality described in
D 8.1.

10 References

[BERNSDORF] Joerg Bernsdorf, Guntram Berti, Bastien Chopard, Jan Hegewald, Manfred
Krafczyk, Eric Lorenz, Alfons Hoekstra and Dinan Wang Towards Distributed Multiscale
Simulation of Biological Processes, accepted by Workshop on Distributed Multiscale
Computing 2011 in conjunction with the 7th IEEE e–Science conference.

[BORGDORFF] Joris Borgdorff, Jean-Luc Falcone, Eric Lorenz, Bastien Chopard and Alfons
G. Hoekstra A principled approach to distributed multiscale computing, from formalization to
execution, accepted by Workshop on Distributed Multiscale Computing 2011 in conjunction
with the 7th IEEE e–Science conference.

http://www.computationalscience.nl/dmc2011/

MAPPER – 261507

D8.2 First prototype with demonstration Page 28 of 28

[CAIAZZO] Alfonso Caiazzo, David Evans, Jean-Luc Falcone, Jan Hegewald, Eric Lorenz,
Bernd Stahl, DinanWang, Jorg Bernsdorf, Bastien Chopard, Julian Gunn, Rod Hose,
Manfred Krafczyk, Patricia Lawford, Rod Smallwood, Dawn Walker, and Alfons G. Hoekstra.
Towards a Complex Automata Multiscale Model of In-Stent Restenosis; ICCS 2009, Part I,
LNCS 5544, pp. 705–714, 2009

[DADA] Dada, J.O., Spasić, I., Paton, N.W. & Mendes, P.: SBRML: a markup language for
associating systems biology data with models. Bioinformatics 26, 932, 2010.
Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide To
Xppaut for Researchers and Students. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002.

[FUNAHASHI] Funahashi, A., Morohashi, M., Kitano, H. & Tanimura, N.: CellDesigner: a
process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159 –
162, 2003.

[GONZALEZ] Horacio González-Vélez and Mario Leyton "A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers" Software: Practice and
Experience Volume 40, Issue 12, pages 1135-1160, November/December 2010

[GROEN] Derek Groen, James Suter and Peter Coveney Modelling distributed multiscale
simulation performance: an application to nanocomposites, accepted by Workshop on
Distributed Multiscale Computing 2011 in conjunction with the 7th IEEE e–Science
conference.

[HOOPS] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,
Mendes, P. & Kummer, U.: COPASI – a COmplex PAthway Simulator, Bioinformatics,
22(24):3067–3074, 2006.

[RYCERZ] Katarzyna Rycerz, Marcin Nowak, Pawel Pierzchala, Marian Bubak, Eryk Ciepiela
and Daniel Harezlak Comparision of Cloud and Local HPC approach for MUSCLE-based
Multiscale Simulations, accepted by Workshop on Distributed Multiscale Computing 2011 in
conjunction with the 7th IEEE e–Science conference.

[THANG] Pham van Thang, Bastien Chopard, Laurent Lefvre, Diemer Anda Ondo, and
Eduardo Mendes. Study of the 1d lattice boltzmann shallow water equation and its coupling
to build a canal network. Journal of Computational Physics, 229(19):7373-7400, 2010.

